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ABSTRACT
HotStuff is a Byzantine fault-tolerant state machine replication pro-
tocol that incurs linear communication costs to achieve consensus.
This linear scalability promoted the protocol to be adopted as the
consensus mechanism in permissioned blockchains. This paper
discusses the architecture, testing, and evaluation of our extensible
framework to implement HotStuff and its variants. The framework
already contains three HotStuff variants and other interchangeable
components for cryptographic operations and leader selection.

Inspired by the Twins approach, we also provide a testing frame-
work for validating protocol implementations by inducing Byzan-
tine behaviors. Test generation is protocol-agnostic; new protocols
can execute the test suite with little-to-no modifications. We report
relevant insights on how we benefited from Twins for validation
and test-driven development. Leveraging our deployment tool, we
evaluated our implementation in various configurations.

CCS CONCEPTS
• Computer systems organization → Reliability; Availability;
Redundancy; • Software and its engineering → Software devel-
opment techniques; Operational analysis;
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1 INTRODUCTION
Many computer systems represent critical infrastructure for busi-
ness continuity across numerous application domains. Designing
and building such critical infrastructure typically require fault-
tolerant and highly available systems, where components are repli-
cated to tolerate and handle failures. However, despite decades of
research, it remains difficult to design and implement correct sys-
tems and protocols [26], e.g., that do not violate consistency despite
bounded failures and attacks. This has become especially pertinent
in this era with a steady stream of new blockchain protocol pro-
posals. While tools can help validate a specific system design [28],
there is still a significant gap between the design and implementa-
tion. Further, much of the existing systems research is difficult to
reproduce [22]. Some of the challenges in reproducing research are
replicating the experimental setup and sufficiently exploring rare
code paths during experiments.

This paper describes our efforts to reimplement HotStuff [27],
a popular Byzantine fault-tolerant (BFT) protocol. HotStuff is im-
plemented using state machine replication (SMR) [23], where a
set of replicas reach consensus on the ordering of operations to
be executed. HotStuff is leader-based and designed for partially
synchronous environments. It is independent of the leader selec-
tion policy, and a correct leader can achieve consensus with linear
communication costs.

To support our efforts, we have built an extensible framework
for implementing fault-tolerant protocols, including modules for
network configuration, event subscription, and client handling, as
well as evaluation primitives. These primitives, together with a
modular design, provide an ideal foundation for the evaluation of
both classical [8], current [5, 6], and future protocols.

Using our framework we have implemented several variants of
HotStuff [15, 16, 27]. Our implementation provides fixed, round-
robin, and reputation-based leader selection policies. The HotStuff
paper [27] briefly mentions the notion of a view synchronizer that
helps to determine the duration of a view without losing respon-
siveness. In our reimplementation, we use the view synchronizer
described in DiemBFT [25]. Finally, the leader uses threshold sig-
natures to prove a proposal’s acceptance by a quorum of replicas
but does not mandate a specific mechanism. We provide signature
schemes based on both ECDSA and BLS12 [4]. Section 3 describes
our system architecture and explains how the different configurable
options impact the system’s behavior.

Beyond HotStuff, we have also reimplemented the Twins ap-
proach for testing BFT implementations [2]. Twins’ testing strategy
is to introduce twin replicas which may send contradicting mes-
sages and appear identical to the other replicas. This approach
can generate interesting Byzantine behaviors like double-voting
and losing the internal state. We can programmatically control the
number of test cases to be executed, providing an opportunity to
integrate with DevOps tools. Our implementation includes a test
suite generation and execution tool and facilitates mocking the nec-
essary interfaces for integration with test suite execution. Section 4
contains a detailed explanation of our optimized test generation
logic and test suite execution.

In summary, this paper makes the following contributions:

• Extensible Framework. Our architecture provides the
necessary foundations to add new protocol implementa-
tions without affecting the existing modules. Developers
can even replace the framework’s core building blocks as
long as they abide by the interface’s semantics. Our met-
rics module can be extended to measure protocol-specific
metrics.

• Repeatability. Our framework is actively being used by
the research community to develop and evaluate new proto-
cols [9, 24]. Apart from these, we provide several HotStuff
variants, some of which don’t provide an open-source im-
plementation. Our extensible framework can be utilized for
the repeatability studies of these variants.

• Validated Implementation is crucial for the adoption of
any BFT SMR system. Developers can dynamically config-
ure our test framework based on the level of testing required.
Our test suite generator is a valuable tool for maintaining
a validated implementation.

• Design Takeaways. We conducted a thorough evaluation
of our implementation to identify the impact of our design
choices. We identified some crucial takeaways from our
evaluation discussed in Section 5.3. For example, “our mes-
sage translation layer is responsible for a large memory
footprint of the replicas.” These investigations shed light
on areas of improvement in our implementation.

2 BACKGROUND
This section introduces Byzantine fault tolerance, the HotStuff
protocol, and the Gorums RPC framework that we leverage to
implement HotStuff.

2.1 Byzantine Fault Tolerance
Byzantine fault-tolerant [18] protocols are used to replicate arbi-
trary applications on multiple servers, called replicas, while tolerat-
ing arbitrary failures or attacks from a subset of the replicas.

PBFT [8] was the first SMR protocol to tolerate Byzantine failures
in asynchronous networks. PBFT can handle 𝑓 simultaneous fail-
ures in a cluster of 3𝑓 +1 replicas. However, the number of signature
verifications and message exchanges required to reach consensus
grows quadratically with the number of replicas resulting in a
scalability challenge. BFT protocols like Zyzzyva [17], SBFT [10],
BFT-SMaRt [3], and 700BFT [1] have similar scalability issues in the
partial synchronous communication model. Hence, these protocols
are unsuitable for large permissioned blockchain deployments.

2.1.1 HotStuff. The HotStuff protocol [27] was designed for per-
missioned blockchains. The number of signature verifications re-
quired to complete a phase grows linearly in the HotStuff protocol.
This is possible due to the leader-to-replica-based communication
model instead of the mesh-like communication model required in
many other protocols. The protocol does not restrict the leader se-
lection policy but assumes every replica knows the view-to-leader
mapping. HotStuff requires three phases to commit a request, pre-
pare, pre-commit, and commit. A replica sends its vote for a proposal
by generating a partial signature of the proposal’s hash. The leader
collects and verifies these partial signatures, and if a quorum of
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valid signatures is received, it uses a threshold signature scheme to
form a quorum certificate.

Each HotStuff phase mentioned above follows the same pattern:
the leader sends the request along with a quorum certificate to the
replicas and returns a vote to the leader if deemed correct. This
generic behavior provides an opportunity to perform these phases
simultaneously, giving rise to Chained HotStuff. In the Chained
variant, if a replica votes for a proposal in the prepare phase, the
replica has voted for the pre-commit phase for the proposal’s parent
and the commit phase of its grandparent. This coalescing of phases
reduces the protocol’s message and signature verification costs.

Fast HotStuff [15] is a variant that claims to provide optimistic
responsiveness in two phases instead of three. The premise for this
optimization is that the new proposal extends from the highest
committed block, and replicas need not change their decision. To
prove it, the leader includes a quorum certificate generated from
the New-View messages sent from the replicas.

Our HotStuff implementation uses Gorums to simplify commu-
nication between replicas and between clients and replicas. Go-
rums [19] is an open-source RPC framework for building quorum-
based systems. Gorums is a wrapper over gRPC [11] and uses proto-
col buffers [12] for marshaling RPCmessages. Gorums provides two
abstractions, configurations and quorum functions, that decouple
membership and message handling from the protocol execution.

2.2 Validation and Verification
Formal verification tools such as TLA+ [28] has previously been
used to prove the safety and liveness of BFT protocols. This ap-
proach cannot scale to large models due to state explosion and
cannot guarantee the correctness of the implementation.

Twins [2], on the other hand, is a white-box approach for testing
BFT protocol implementations. The main idea is to create twins,
usually a pair of replicas with the same credentials, and selectively
send and receive the messages based on some test scenario. This ap-
proach can induce the following replica behaviors: (i) Equivocation:
a replica sends conflicting information to a different set of replicas,
(ii) Amnesia: the twins may send two valid votes to two conflicting
proposals, and (iii) lose the internal protocol state.

Table 1 shows a sample test case generated using the Twins
approach with two network partitions and four replicas, where
one is a twin replica. Each row consists of the round number and
the network partition scenarios for that round. In the context of
twins, a round is an abstraction indicating a proposal-vote cycle in
the cluster. Each network partition is a subset of replicas that can
send/receive messages among themselves. For example, in round
1, replicas 𝐴, 𝐵, and 𝐶 are part of one network partition, and any
message sent by 𝐴 is received only at 𝐵 and 𝐶 . A round’s leader is
indicated with an underscored replica name, and the compromised
twin is represented with a ′ symbol. For example, in round 2, 𝐴′

is the elected leader, and it is the twin of replica 𝐴. The protocol
is tested by moving through the configuration as specified in each
round of the test case.
Testing is performed in two steps, test case generation and test
case execution. Test cases are generated based on three parameters:
the number of replicas, the number of twin replicas, and the net-
work partitions for each round. All possible permutations of these

Table 1: Sample network partition test case generated using Twins.

Round Network Partitions
1 𝑃1 : {𝐴, 𝐵,𝐶} 𝑃2 : {𝐴′, 𝐷}
2 𝑃1 : {𝐴, 𝐵,𝐶} 𝑃2 : {𝐴′, 𝐷}
3 𝑃1 : {𝐴, 𝐵,𝐶} 𝑃2 : {𝐴′, 𝐷}
4 𝑃1 : {𝐴, 𝐵,𝐴′} 𝑃2 : {𝐶, 𝐷}

parameters are enumerated to generate the test scenarios. Hence,
the number of test scenarios grows exponentially with the number
of replicas. However, developers can optimize the test generation
logic to prune test cases with identical or uninteresting behaviors.
Network partitions of the test scenario determine the delivery of
the protocol messages to the replicas.

After executing a test case, a safety check is performed on all
replicas to verify if any of the replicas committed conflicting re-
quests. Liveness violations can be detected if the replicas cannot
commit the request after a certain number of rounds.

3 ARCHITECTURE
This section describes the architecture and module system of our
HotStuff implementation.

We implemented a set of configurable modules to provide an ex-
tensible HotStuff protocol. Every module implements an interface
and can have multiple implementations with at least one default
implementation. Fig. 1 shows various module interfaces and cur-
rently available implementations of these modules. For example,
the crypto module, which handles the generation and verification
of signatures, has two implementations: ecdsa, and bls12, where
ecdsa is the default implementation. When deploying the protocol,
the system administrator chooses the module implementation.

We apply the separation of concerns design principle. The replica
is separated into three layers: communication, protocol, and appli-
cation. The communication layer handles the network connections
and provides broadcast, multicast, and unicast RPC services. The

Figure 1: Modular interfaces and implementations of these modules
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protocol layer contains the actual protocol implementation. The ap-
plication layer contains the business logic that uses the consensus
protocol to provide the service to the end user.

3.1 Building Blocks
The communication layer can be implemented using most commu-
nication technologies. We chose Gorums as it simplifies quorum
communication and configuration management. The protocol layer
comprises sevenmodules: Consensus, leader selection, crypto, event
loop, synchronizer, command cache, and metrics, as shown in Fig. 1.

Some of these modules have only one default implementation,
while others have multiple implementations. All module implemen-
tations are interoperable. For example, the consensus module has
three implementations; Simplified (SHS), Chained (CHS), and Fast
HotStuff (FHS), and the selection of any one of these implementa-
tions have no impact on any other module implementations. We
developed a sample blockchain application to use the underlying
consensus protocol. This blockchain stores the blocks by their view
number and removes any forked blocks on every commit. The com-
position of the module implementations determines the behavior
of the replicas, and all replicas in the configuration use the same
module composition.

A module may interact with other modules to complete its oper-
ation. For example, the consensus module invokes the API of the
crypto module to generate the signature for voting on a proposal.
A module registry provides access to all the registered modules and
facilitates module interactions.

The module registry exposes two methods: RegisterModule() and
GetModule(). When a module implementation is loaded, the Regis-
terModule() is invoked with a unique name for its implementation
to register itself. For example, the Fast HotStuff implementation
registers its constructor and the unique name fasthotstuff. The Get-
Module() function takes the name of the module implementation
and returns the initialized object. Our registry uses the builder
design pattern to construct a graph of modules to form a replica
object, similar to the approach of existing micro-protocol architec-
tures [13, 14, 20, 21] and also promoted in textbook presentations [7].
A set of chosen or default module objects are passed to the builder
object. When the build() function is called, a container object is
returned, which holds all the initialized objects. This container
object is passed to all modules through the InitModule() function.
With this design, loosely coupled modules are composed to form
different behaviors.

Module implementations can gain access to other module inter-
faces through themodule registry. Implementing amodule interface
may sometimes require functionality beyond the module interface
API. Thus, the interface definition would have to be changed to
allow other modules to use these additional functions. However,
this may lead to implementation-specific functions in the interface,
resulting in interface explosion and dummy functions. To circum-
vent this problem, we have introduced an event loop mechanism to
invoke a module’s implementation-specific functionality by passing
events between the modules.

All modules have access to the event loop via its API. This allows
event-based interactions between modules, such that the events are
handled serially. Protocol execution is serialized through the event

loop as the messages received from other replicas are converted
to hotstuff-defined events and added using the AddEvent() method.
This avoids the need for mutexes whenmodules are handling events.
Events are passed using a publish-subscribe mechanism. Module
implementations can register their interest in specific event types
using either RegisterHandler() or RegisterObserver() API calls. There
can be multiple observers for each event type, but only one handler.
All observers are executed before the handler.

Apart from the publish-subscribe mechanism, the event loop
provides two additional functionalities: delayed event handling
and periodic event generation. AddTicker() method takes a call-
back function and time interval as input to periodically add the
event to the event loop, which is generated by the callback function.
AddTicker() can also execute periodic operations such as record-
ing protocol metrics. Delayed event handling postpones handling
an event until some other event type has been processed and is
achieved through the event loop’s DelayUntil() method. The Delay-
Until() method helps a replica handle out-of-order messages. For
example, in HotStuff, votes for the current view’s proposal are sent
to the leader of the next view. Thus, there may be scenarios where
the previous view’s proposal has yet to arrive at the current view’s
leader, while the proposal’s votes could already have arrived. To
handle this, the leader calls DelayUntil() to delay the processing of
these votes until the proposal arrives.

3.1.1 Protocol Execution. Leveraging the event loop, a single thread
executes the protocol logic synchronously, except for the signature
verification. The leader of the view asynchronously verifies the
received votes, and when a thread forms the quorum certificate, it
is shared with the protocol using the event loop. When a replica re-
ceives a new quorum certificate in the proposal, all the signatures in
the quorum certificate are verified in parallel. The communication
layer implemented with Gorums is multi-threaded, and each thread
converts these protobuf messages into protocol-defined events us-
ing a translation layer. These events are added into the event loop
to be processed by the module responsible for handling the events;
for example, the view synchronizer handles the event generated
upon receiving the New-View message.

4 TWINS-BASED TESTING
We have tested our HotStuff implementation by generating and
executing the test scenarios obtained using the Twins approach.
Twin replicas share the same ID and private key; thus, twins are
indistinguishable from a single replica for all the other replicas.
Generated test scenarios may contain Byzantine behaviors, which
has the potential to discover safety bugs in the implementation.

Our test framework can generate and execute test scenarios as a
single step or two separate steps. In the scenario generation step, all
the generated scenarios are written to files, and the execution step
reads the scenarios from the files to execute them. This prevents the
repeated generation of scenarios, thereby saving time and paralleliz-
ing the execution. This design of the test framework facilitates the
integration of continuous integration and continuous deployment
tools. It provides an opportunity to execute specific user-defined
scenarios written in the same format as the test generator.

4
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4.1 Test Scenario Generation
The test scenario generator requires the following parameters:
(i) replicas specifies the number of replicas, (ii) twins specifies how
many of the replicas should have a twin, (iii) partitions represent
the number of partitions in the cluster, such that replicas in one
partition cannot reach replicas in another. (iv) rounds specify the
number of views to run for each test scenario. (v) scenarios-per-file
gives the number of scenarios per output file. (vi) output gives the
location of the test scenario files. The test scenario generator takes
the above parameters as input to the following steps.

Step 1 generates all possible partition scenarios for the spec-
ified number of replicas and twins. For example with 4 replicas
{𝐴, 𝐵,𝐶, 𝐷}, 2 partitions and 1 twin {𝐴,𝐴′}, some sample partition
scenarios could be {{𝐴, 𝐵,𝐶}, {𝐴′, 𝐷}}, {{𝐴,𝐶}, {𝐴′, 𝐷, 𝐵}}.

Step 2 prunes the partition scenarios considered identical. Two
partition scenarios are considered identical if they result in identical
behavior by correct replicas. Partition scenarios produce identical
behavior only if the correct (non-twin) replicas switch positions
in the partitions. For example, the scenarios {𝐴, 𝐵}, {𝐴′,𝐶, 𝐷} and
{𝐴, 𝐷}, {𝐴′, 𝐵,𝐶}, are considered identical as they differ only in the
position of 𝐵 and 𝐷 replicas. Applying this pruning for the above
configuration results in only 6 partition scenarios.

Step 3 takes the partition scenarios generated in Step 2 and
assigns each partition scenario to all 𝑛 possible leaders. This is done
by computing the cross-product between partition scenarios and
leader assignments. Hence, for a test scenario with 𝑝 partitions,
after Step 3, 𝑛 · 𝑝 leader scenarios are generated.

Step 4 arranges the scenarios generated in the previous step
into the specified number of rounds. Test scenarios are generated
by assigning all possible leader scenarios to each round. If 𝑙 leader
scenarios are generated by Step 3 and 𝑟 rounds are configured then
a total of 𝑙𝑟 test scenarios are generated.

We provide an option to randomize the generated test scenarios
instead of sequentially generated scenarios. The benefit of random-
ization is that we can more quickly sample a broader diversity of
test scenarios. Thus, hopefully, finding bugs due to Byzantine be-
haviors more quickly as well. Our experience seems to indicate
that this is true. For reproducibility, we can seed the generator to
produce the same order of randomized test scenarios.

4.2 Test Scenario Execution
The scenario executor takes the following parameters: (i) input is
the location of the files containing the scenarios, (ii) the consen-
sus algorithm to be used for testing, and (iii) output specifies the
location to write the failed scenarios.

Test scenario execution uses all available CPUs. Before executing
the scenarios, replica objects and their modules are created, as
explained in Section 3. The twin replicas are initialized with the
same ID and private key. To simulate partitions with Twins, we
replace the original Gorums-based configuration module with a
mocked configuration module, which is responsible for delivering
messages. This mocked configuration module is then initialized
with all partition scenarios of the current test scenario.

If replica 𝐴 broadcasts a message to the configuration in view 𝑣 ,
the mocked configuration module delivers the message to replica 𝐵
iff 𝐵 is in the same partition as replica 𝐴 for view 𝑣 . To kickstart

a test scenario, the leader of the first view sends the proposal to
all reachable replicas. The event loop provides a Tick() function
to process events one at a time. This function moves the replicas
through the scenario’s views by executing the event on all replicas
before moving to the next event. The consensus module handles
messages received through the event loop and replies through the
configuration module. The leader module returns the ID of the
leader replica based on the leader selection module, so it is mocked
to return the leader ID based on the scenarios and rounds. After
completing all the views, each replica’s commit logs are analyzed
for safety violations. A test scenario is written to file if a safety
violation is found.

Appendix F of the Twins paper [2] reports on a safety violation
found in the Fast HotStuff protocol. The scenario involves four hon-
est replicas with no twins, divided into two partitions, running for
11 rounds. The authors later rectified this safety violation in version
7 of Fast HotStuff [15], and we initially implemented this corrected
version. Later we modified our implementation to the faulty ver-
sion, and we were also able to find the same safety violation using
our Twins testing framework.

Apart from the test scenarios derived using the Twins approach,
we have developed an extensive suite of unit tests to test our imple-
mentation. These test suites guard our code base against mistakes
during maintenance and the addition of new features.

5 EVALUATION
Our HotStuff implementation has 14K lines of Go code spread
over 100 files. Apart from the protocol implementation, it includes
the generated code from the protocol buffers, unit test suite, and
deployment tools. Additionally, a metrics module measures the
throughput as observed by the replicas and the latency at the clients.

The metrics module registers as a handler for the CommitEvent,
raised by the replica when a command is committed. These events
are counted until a TickEvent, which is raised periodically based
on a configured measurement interval. The tick event handler logs
all the measured metrics and resets the counters. This mechanism
can be extended to measure protocol-specific metrics, such as view
timeouts and the number of signature verifications.

5.1 Setup
We evaluated our implementation using a local cluster and virtual
machines on AWS EC2. Our local cluster consists of 30 machines,
and each node has 32 GB of RAM and 12 cores of Intel Xenon
processors with Hyper-Threading enabled. A 10 Gbps TOR switch
connects the nodes, and the network latency among them is less
than 1 ms. All cores have a maximum frequency of 3.3 GHz.

Each node, either physical or virtual machine, can host one or
more HotStuff replicas, and unless specified, all experiments are
run with one replica/client per node. Communication between the
replicas and the clients is secured through TLS, and the public
key required to establish trust is shared with replicas and clients
over ssh. Unless specified, all experiments are run with zero-sized
payloads in the client requests. The deployment procedure for the
experiments is explained in Section 5.5.
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Figure 2: Throughput vs latency for 4 and 7 replicas and 5 and 10 clients for
200 and 800 batch sizes with increasing load from the clients and no payload
in the requests

5.2 Performance Evaluation
We conducted experiments to understand the performance impact
of our design choices in common configurations of BFT evaluation.

Experiments show that our implementation provides similar
performance to other works [24, 27], is resilient to attacks, and
scales well up to 8 cores per machine.

5.2.1 Base Performance. We measured the throughput and latency,
varying the batch size, number of clients, and replicas. Replicas are
created with the default module implementations, and experiments
are conducted without customization. We ran the experiments with
5 and 10 clients for 4, 7, and 16 replicas and batch sizes 100, 200,
400, and 800. Fig. 2 depicts the throughput and latency for 4 and 7
replicas with 5 and 10 clients with batch sizes 200 and 800; other
results are not presented due to space constraints. Throughput
is the average number of commands executed per second at the
replicas, and latency is the average time taken to commit a request
as measured by the clients. The starting data point of each plot
represents the throughput and latency observed when each client
sends 20 × 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 concurrent requests, and the load is doubled
for subsequent data points. At the given start load, replicas can
readily fill the batches.

5.2.2 Resiliency Testing. To test the resiliency of our implementa-
tion, we introduced two faulty behaviors for the leaders, silent and
slow. A silent leader does not send the proposal to replicas, creating
a view timeout and causing a delay in committing a request. A slow
leader tries to induce a fork by creating a proposal by skipping the
parent with the grandparent as the block’s parent. This may lead
to discarding the block prepared in the previous view.

We performed experiments and observed the impact of slow and
silent leader faults on the throughput of a 13-node cluster. The
number of View-Timeouts increased exponentially for slow leader
faults and linearly for silent leader faults in the cluster as shown in
Fig. 4. The configuration with slow leader faults executed 50 times
more commands than the configuration with silent leader faults.
A silent leader causes timeout certificate creation and verification,
wasting time and CPU resources. Fig. 3 shows the impact of a recur-
ring slow leader fault on the cluster’s throughput. This shows that

our implementation can handle faulty leaders, and the throughput
recovered after the faulty behavior of the leaders ceased.
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Figure 3: Impact of four slow leaders on the throughput of a 13-node cluster.
The experiment was conducted with 5 non-faulty clients at 100 batch size. A
replica remains slow leader for 15 seconds every 15 seconds throughout the
experiment.
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Figure 4: Impact of slow and silent leader faults on a 13-node cluster. The
experiment was conducted with 5 non-faulty clients at 100 batch size.

5.2.3 CPU Scaling. Fig. 5 shows how our implementation scales
with increasing cores enabled. As the figure shows, with two cores
enabled, we observe a throughput increase of more than 100 % com-
pared to a single core. This is because, with two cores, the crypto
module can concurrently verify the signatures in the quorum certifi-
cate. However, as expected, adding more than four cores only has a
limited effect. We note that only connection handling and signature
verification are parallelized, while a single thread executes the main
protocol logic to reduce possible sources of implementation errors.

5.2.4 Micro Benchmarks. As mentioned in Section 3, a replica’s
behavior is determined by selecting modules to form the replica
object. Since some modules have more than one implementation,
we generated micro-benchmarks to compare their performance.
We ran each experiment with 16, 32, 64, and 96 replicas with 4
replicas on each physical node. Ecdsa and bls12 implementations
of crypto module, fixed-leader and round-robin implementations of
leader-selection module are chosen for this evaluation.

Ecdsa module outperformed bls12 module as shown in Fig. 6.
Apart from the cryptographic complexity, the throughput differ-
ence can be partly attributed to the parallelized signature verifica-
tion in the ecdsa. However, with increasing configuration size, the
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difference in the throughput between ecdsa and bls12 modules is
decreasing as expected.

Fig. 7 depicts the throughput and latency for the round-robin and
fixed leader modules. For a configuration size of 16, the throughput
of the round-robinmodule is thrice that of the fixed leader selection
module. Since HotStuff uses a star topology with a fixed leader, the
network resources of the leader are quickly overwhelmed, resulting
in poor throughput. At a configuration size of 96, both modules
performed similarly due to the high network load.

5.2.5 WAN Evaluation. The HotStuff protocol is designed to run
in a WAN environment, and we evaluated our implementation in
a WAN-based setting using AWS. We used AWS EC2 services to
create 9 virtual machines (c4·2xlarge), each with 8 virtual cores with
15 GB RAM and a 1 Gbps network. These servers were distributed
across 4 AWS regions in the US; 5 servers were used as clients, and
4 as protocol replicas. Each region has a client and server co-located
with one region containing an additional client.

We conducted these experiments to understand the practical
performance expectations of our implementation. These experi-
ments are conducted similarly to the base evaluation as explained
in Section 5.2.1. At higher batch sizes and with low client load,
replicas must wait to fill their batches, leading to increased latency
and lower throughput, as shown in Fig. 8. This creates a distinctive
’U’ shape for higher batch sizes. However, for experiments with
payload, we did not observe the benefits of batching due to the
WAN links’ bandwidth limitations.

5.3 Performance Improvements
During the evaluation of our implementation, we realized that some
of our design choices were impacting performance. In this section,
we evaluate the impact of two performance optimizations.

5.3.1 Removal of Translation layer. To better understand the per-
formance of our implementation, we investigated the CPU and
memory profiles of the replicas. Apart from executing the protocol,
a significant amount of CPU time (∼16 %) is spent on garbage col-
lection. As explained in Section 3.1.1, whenmessages move from the
Communication layer to the Protocol layer, they are translated from

1 2 4 8
0

0.5

1

1.5

·105

Number of cores per node

Th
ro
ug

hp
ut

(o
p/
se
c)

100-batch 200-batch 400-batch 800-batch

Figure 5: Throughput for 4 replicas and 5 clients with 1, 2, 4, and 8 cores
enabled, and with batch sizes 100, 200, 400, and 800.
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Figure 8: Throughput vs latency: 4 replicas and 5 clients and different batch
sizes and payload size 64 bytes with increasing load from the clients in WAN
setup.

protobuf types to hotstuff-defined types. This translation avoids
tight coupling and makes our protocol implementation portable to
other RPC frameworks. However, while profilingmemory consump-
tion, we identified that the translation layer consumed more than
half of the allocatedmemory.We, therefore, removed the translation
layer to decrease the number of allocations and improve through-
put and latency. Compared to the base evaluation, we observed a
maximum of ∼18 % and ∼5 % throughput improvement with and
without payload, respectively, as shown in Fig. 9 and Fig. 10.
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Fig. 11 and Fig. 12 depict the memory footprint of a replica with
and without the translation layer during the lifetime of the experi-
ment. The allocated memory is further divided into the memory
used by the protocol and communication layers. As expected, the
memory occupied by the communication layer remained the same
for both variants. Removing the translation layer, we observed
∼41 % and ∼14 % fewer allocations with and without payload, re-
spectively.

The protocol layer processes the commands as a batch. At lower
batch sizes, more batches get executed than at higher batch sizes,
so the percentage of saved memory is higher at lower batch sizes.
When batching is disabled, we observed that the replica allocated
∼44 % less memory without the translation layer. The results pre-
sented in the Fig. 11 and Fig. 12 represent the total memory used
by a replica during the lifetime of the experiment, and this varies
based on the number of commands executed in that configuration.
In Fig. 12, our network infrastructure scaled until a payload size of
512 bytes. However, for a payload size of 1024 bytes, we observed
decreased throughput, resulting in reduced memory allocation.

5.3.2 Crypto Cache. During the implementation of the protocol,
we observed that the quorum certificate is verified twice in the
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Figure 11: Memory allocated during the lifetime (60 sec) of a replica with and
without the translation layer (TL) for different batch sizes. The protocol layer
and communication layer memory profiles are captured separately.
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Figure 12: Memory allocated during the lifetime (60 sec) of a replica with and
without the translation layer (TL) for different payload sizes. The protocol
layer and communication layer memory profiles are captured separately.

view success scenario. Once in the consensus module before cre-
ating a vote and again in the synchronizer module to update the
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Figure 13: Impact of crypto cache on the throughput of 4, 7, 13, 16, and 19
replicas with 5 clients for a batch size of 100.
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protocol state. Multiple verifications can be prevented if the con-
sensus module can indicate to the synchronizer module that the
quorum certificate is already verified. This would create strong
assumptions/dependencies among the modules. To prevent such
dependencies, we created a crypto cache as a thin layer over the
actual crypto module implementation.

This layer contains an LRU cache to store the quorum certificate
and hash of the message. With the cache, modules can verify the
quorum certificate multiple times with no performance penalty. All
the above experiments are conducted with default module imple-
mentations, and the crypto cache is enabled by default.

In this section, we like to quantify the performance benefit of
our design decision. Fig. 13 shows the impact of the crypto cache
on throughput for various configuration sizes. We observed higher
throughput gains for bigger configuration sizes and the maximum
throughput benefit of ∼60 % in a 19 replica configuration.

5.4 Testing with Twins
We used our Twins-based framework to test our implementation
and found an interesting bug. We found the bug in a 4-node con-
figuration with a single twin pair arranged in two partitions over
seven rounds. We encountered this bug while executing 600 million
generated test scenarios.

A summary of the bug is as follows: to commit a block 𝑏, the
protocol expects to commit all blocks between 𝑏 and the last com-
mitted block (𝑏𝑙𝑐 ). The commit() function recursively fetches the
parent of block 𝑏 until it reaches 𝑏𝑙𝑐 . If the block is unavailable at
the replica, it tries to fetch the block by its hash from a quorum
of other replicas. The recursive commit() function did not handle
a failure during the fetch operation and went on to commit the
current block, causing a safety violation. For example, assume 𝑏𝑙𝑐
→ 𝑏′′ → 𝑏′ → 𝑏 is the correct sequence of the committed blocks.
Assume further, a replica has 𝑏𝑙𝑐 as the last committed block and
is about to commit block 𝑏. It has to fetch and commit 𝑏′′ and 𝑏′.
Failure to fetch 𝑏′′ may lead to an incorrect chain 𝑏𝑙𝑐 → 𝑏′ → 𝑏. We
fixed the commit function to return an error if any of the remote
fetches failed and abandon committing the current block.

5.5 iago
We deploy our clients and replicas on many nodes, collecting logs,
metrics, and resource usage profiles from the nodes. These tasks
typically involve a fair amount of manual labor. We tried to au-
tomate these tasks with existing DevOps tools like Ansible and
puppet, but these tools were complicated, unreliable, and lacked
programmatic control over remote nodes. Therefore, we built an
in-house deployment framework iago, which can create clients and
replicas and fetch logs, metrics, and profiles from the remote nodes.
Currently, iago uses a wrapper over secure shell (SSH) to securely
communicate with the other nodes but is flexible enough to support
other mechanisms.

Iago defines a group abstraction representing all physical nodes
available for deployment. A task is executed simultaneously on the
nodes using the group object and determines the remote replica’s
behavior in failure scenarios. Using this abstraction, we load the
executable binary and create the necessary environment for it to
run. A designated controller node is used to start a deployment or

experiment. Using iago, the controller node creates SSH sessions for
all the nodes. These sessions perform RPC calls on the remote nodes
to create replicas and clients and to start the protocol based on the
administrator’s configuration. After completing the experiment,
the nodes send the logs, metrics, and profiles to the controller node
over the same SSH sessions.

6 CONCLUSIONS
Implementing systems and protocols whose purpose is to tolerate
and handle failures must not become the root cause of such failures.
The difficulty of implementing fault-tolerant systems correctly is
apparent from a history spanning several decades of research. We
have replicated several variants of the HotStuff protocol using
an extensible module framework and a typical event loop. Our
implementation has undergone significant evaluation, modifying it
for better performance.

Our repository is publicly available at github.com/relab/hotstuff
and we welcome well-written and documented contributions. Fol-
lowing state-of-the-art research, we are continuously adding new
implementations to crypto, synchronizer, and consensus modules.
A CI/CD pipeline is being set up to monitor the correctness and
performance impact of the new features.

In summary, we have presented an extensible, resilient, and
performance-driven framework to build new BFT protocols or re-
produce existing ones.
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