
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

An Extensible Framework for Implementing and Validating
Byzantine Fault-tolerant Protocols

Hanish Gogada
University of Stavanger

Norway
hanish.gogada@uis.no

Hein Meling
University of Stavanger

Norway
hein.meling@uis.no

Leander Jehl
University of Stavanger

Norway
leander.jehl@uis.no

John Ingve Olsen
University of Stavanger

Norway
johningveolsen@gmail.com

ABSTRACT
HotStuff is a Byzantine fault-tolerant state machine replication pro-
tocol that incurs linear communication costs to achieve consensus.
This linear scalability promoted the protocol to be adopted as the
consensus mechanism in permissioned blockchains. This paper
discusses the architecture, testing, and evaluation of our extensible
framework to implement HotStuff and its variants. The framework
already contains three HotStuff variants and other interchangeable
components for cryptographic operations and leader selection.

Inspired by the Twins approach, we also provide a testing frame-
work for validating protocol implementations by inducing Byzan-
tine behaviors. Test generation is protocol-agnostic; new protocols
can execute the test suite with little-to-no modifications. We report
relevant insights on how we benefited from Twins for validation
and test-driven development. Leveraging our deployment tool, we
evaluated our implementation in various configurations.

CCS CONCEPTS
• Computer systems organization → Reliability; Availability;
Redundancy; • Software and its engineering → Software devel-
opment techniques; Operational analysis;

KEYWORDS
Distributed Systems, Blockchains, Byzantine Fault Tolerance, Hot-
Stuff
ACM Reference Format:
Hanish Gogada, Hein Meling, Leander Jehl, and John Ingve Olsen. 2023. An
Extensible Framework for Implementing and Validating Byzantine Fault-
tolerant Protocols. In The 5th workshop on Advanced tools, programming
languages, and PLatforms for Implementing and Evaluating algorithms for
Distributed systems (ApPLIED 2023), June 19, 2023, Orlando, FL, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3584684.3597266

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ApPLIED 2023, June 19, 2023, Orlando, FL, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0128-3/23/06. . . $15.00
https://doi.org/10.1145/3584684.3597266

1

https://doi.org/10.1145/3584684.3597266
https://doi.org/10.1145/3584684.3597266

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ApPLIED 2023, June 19, 2023, Orlando, FL, USA Gogada, Meling et al.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

1 INTRODUCTION
Many computer systems represent critical infrastructure for busi-
ness continuity across numerous application domains. Designing
and building such critical infrastructure typically require fault-
tolerant and highly available systems, where components are repli-
cated to tolerate and handle failures. However, despite decades of
research, it remains difficult to design and implement correct sys-
tems and protocols [26], e.g., that do not violate consistency despite
bounded failures and attacks. This has become especially pertinent
in this era with a steady stream of new blockchain protocol pro-
posals. While tools can help validate a specific system design [28],
there is still a significant gap between the design and implementa-
tion. Further, much of the existing systems research is difficult to
reproduce [22]. Some of the challenges in reproducing research are
replicating the experimental setup and sufficiently exploring rare
code paths during experiments.

This paper describes our efforts to reimplement HotStuff [27],
a popular Byzantine fault-tolerant (BFT) protocol. HotStuff is im-
plemented using state machine replication (SMR) [23], where a
set of replicas reach consensus on the ordering of operations to
be executed. HotStuff is leader-based and designed for partially
synchronous environments. It is independent of the leader selec-
tion policy, and a correct leader can achieve consensus with linear
communication costs.

To support our efforts, we have built an extensible framework
for implementing fault-tolerant protocols, including modules for
network configuration, event subscription, and client handling, as
well as evaluation primitives. These primitives, together with a
modular design, provide an ideal foundation for the evaluation of
both classical [8], current [5, 6], and future protocols.

Using our framework we have implemented several variants of
HotStuff [15, 16, 27]. Our implementation provides fixed, round-
robin, and reputation-based leader selection policies. The HotStuff
paper [27] briefly mentions the notion of a view synchronizer that
helps to determine the duration of a view without losing respon-
siveness. In our reimplementation, we use the view synchronizer
described in DiemBFT [25]. Finally, the leader uses threshold sig-
natures to prove a proposal’s acceptance by a quorum of replicas
but does not mandate a specific mechanism. We provide signature
schemes based on both ECDSA and BLS12 [4]. Section 3 describes
our system architecture and explains how the different configurable
options impact the system’s behavior.

Beyond HotStuff, we have also reimplemented the Twins ap-
proach for testing BFT implementations [2]. Twins’ testing strategy
is to introduce twin replicas which may send contradicting mes-
sages and appear identical to the other replicas. This approach
can generate interesting Byzantine behaviors like double-voting
and losing the internal state. We can programmatically control the
number of test cases to be executed, providing an opportunity to
integrate with DevOps tools. Our implementation includes a test
suite generation and execution tool and facilitates mocking the nec-
essary interfaces for integration with test suite execution. Section 4
contains a detailed explanation of our optimized test generation
logic and test suite execution.

In summary, this paper makes the following contributions:

• Extensible Framework. Our architecture provides the
necessary foundations to add new protocol implementa-
tions without affecting the existing modules. Developers
can even replace the framework’s core building blocks as
long as they abide by the interface’s semantics. Our met-
rics module can be extended to measure protocol-specific
metrics.

• Repeatability. Our framework is actively being used by
the research community to develop and evaluate new proto-
cols [9, 24]. Apart from these, we provide several HotStuff
variants, some of which don’t provide an open-source im-
plementation. Our extensible framework can be utilized for
the repeatability studies of these variants.

• Validated Implementation is crucial for the adoption of
any BFT SMR system. Developers can dynamically config-
ure our test framework based on the level of testing required.
Our test suite generator is a valuable tool for maintaining
a validated implementation.

• Design Takeaways. We conducted a thorough evaluation
of our implementation to identify the impact of our design
choices. We identified some crucial takeaways from our
evaluation discussed in Section 5.3. For example, “our mes-
sage translation layer is responsible for a large memory
footprint of the replicas.” These investigations shed light
on areas of improvement in our implementation.

2 BACKGROUND
This section introduces Byzantine fault tolerance, the HotStuff
protocol, and the Gorums RPC framework that we leverage to
implement HotStuff.

2.1 Byzantine Fault Tolerance
Byzantine fault-tolerant [18] protocols are used to replicate arbi-
trary applications on multiple servers, called replicas, while tolerat-
ing arbitrary failures or attacks from a subset of the replicas.

PBFT [8] was the first SMR protocol to tolerate Byzantine failures
in asynchronous networks. PBFT can handle 𝑓 simultaneous fail-
ures in a cluster of 3𝑓 +1 replicas. However, the number of signature
verifications and message exchanges required to reach consensus
grows quadratically with the number of replicas resulting in a
scalability challenge. BFT protocols like Zyzzyva [17], SBFT [10],
BFT-SMaRt [3], and 700BFT [1] have similar scalability issues in the
partial synchronous communication model. Hence, these protocols
are unsuitable for large permissioned blockchain deployments.

2.1.1 HotStuff. The HotStuff protocol [27] was designed for per-
missioned blockchains. The number of signature verifications re-
quired to complete a phase grows linearly in the HotStuff protocol.
This is possible due to the leader-to-replica-based communication
model instead of the mesh-like communication model required in
many other protocols. The protocol does not restrict the leader se-
lection policy but assumes every replica knows the view-to-leader
mapping. HotStuff requires three phases to commit a request, pre-
pare, pre-commit, and commit. A replica sends its vote for a proposal
by generating a partial signature of the proposal’s hash. The leader
collects and verifies these partial signatures, and if a quorum of

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

An Extensible Framework for Byzantine Fault-tolerant Protocols ApPLIED 2023, June 19, 2023, Orlando, FL, USA

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

valid signatures is received, it uses a threshold signature scheme to
form a quorum certificate.

Each HotStuff phase mentioned above follows the same pattern:
the leader sends the request along with a quorum certificate to the
replicas and returns a vote to the leader if deemed correct. This
generic behavior provides an opportunity to perform these phases
simultaneously, giving rise to Chained HotStuff. In the Chained
variant, if a replica votes for a proposal in the prepare phase, the
replica has voted for the pre-commit phase for the proposal’s parent
and the commit phase of its grandparent. This coalescing of phases
reduces the protocol’s message and signature verification costs.

Fast HotStuff [15] is a variant that claims to provide optimistic
responsiveness in two phases instead of three. The premise for this
optimization is that the new proposal extends from the highest
committed block, and replicas need not change their decision. To
prove it, the leader includes a quorum certificate generated from
the New-View messages sent from the replicas.

Our HotStuff implementation uses Gorums to simplify commu-
nication between replicas and between clients and replicas. Go-
rums [19] is an open-source RPC framework for building quorum-
based systems. Gorums is a wrapper over gRPC [11] and uses proto-
col buffers [12] for marshaling RPCmessages. Gorums provides two
abstractions, configurations and quorum functions, that decouple
membership and message handling from the protocol execution.

2.2 Validation and Verification
Formal verification tools such as TLA+ [28] has previously been
used to prove the safety and liveness of BFT protocols. This ap-
proach cannot scale to large models due to state explosion and
cannot guarantee the correctness of the implementation.

Twins [2], on the other hand, is a white-box approach for testing
BFT protocol implementations. The main idea is to create twins,
usually a pair of replicas with the same credentials, and selectively
send and receive the messages based on some test scenario. This ap-
proach can induce the following replica behaviors: (i) Equivocation:
a replica sends conflicting information to a different set of replicas,
(ii) Amnesia: the twins may send two valid votes to two conflicting
proposals, and (iii) lose the internal protocol state.

Table 1 shows a sample test case generated using the Twins
approach with two network partitions and four replicas, where
one is a twin replica. Each row consists of the round number and
the network partition scenarios for that round. In the context of
twins, a round is an abstraction indicating a proposal-vote cycle in
the cluster. Each network partition is a subset of replicas that can
send/receive messages among themselves. For example, in round
1, replicas 𝐴, 𝐵, and 𝐶 are part of one network partition, and any
message sent by 𝐴 is received only at 𝐵 and 𝐶 . A round’s leader is
indicated with an underscored replica name, and the compromised
twin is represented with a ′ symbol. For example, in round 2, 𝐴′

is the elected leader, and it is the twin of replica 𝐴. The protocol
is tested by moving through the configuration as specified in each
round of the test case.
Testing is performed in two steps, test case generation and test
case execution. Test cases are generated based on three parameters:
the number of replicas, the number of twin replicas, and the net-
work partitions for each round. All possible permutations of these

Table 1: Sample network partition test case generated using Twins.

Round Network Partitions
1 𝑃1 : {𝐴, 𝐵,𝐶} 𝑃2 : {𝐴′, 𝐷}
2 𝑃1 : {𝐴, 𝐵,𝐶} 𝑃2 : {𝐴′, 𝐷}
3 𝑃1 : {𝐴, 𝐵,𝐶} 𝑃2 : {𝐴′, 𝐷}
4 𝑃1 : {𝐴, 𝐵,𝐴′} 𝑃2 : {𝐶, 𝐷}

parameters are enumerated to generate the test scenarios. Hence,
the number of test scenarios grows exponentially with the number
of replicas. However, developers can optimize the test generation
logic to prune test cases with identical or uninteresting behaviors.
Network partitions of the test scenario determine the delivery of
the protocol messages to the replicas.

After executing a test case, a safety check is performed on all
replicas to verify if any of the replicas committed conflicting re-
quests. Liveness violations can be detected if the replicas cannot
commit the request after a certain number of rounds.

3 ARCHITECTURE
This section describes the architecture and module system of our
HotStuff implementation.

We implemented a set of configurable modules to provide an ex-
tensible HotStuff protocol. Every module implements an interface
and can have multiple implementations with at least one default
implementation. Fig. 1 shows various module interfaces and cur-
rently available implementations of these modules. For example,
the crypto module, which handles the generation and verification
of signatures, has two implementations: ecdsa, and bls12, where
ecdsa is the default implementation. When deploying the protocol,
the system administrator chooses the module implementation.

We apply the separation of concerns design principle. The replica
is separated into three layers: communication, protocol, and appli-
cation. The communication layer handles the network connections
and provides broadcast, multicast, and unicast RPC services. The

Figure 1: Modular interfaces and implementations of these modules

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ApPLIED 2023, June 19, 2023, Orlando, FL, USA Gogada, Meling et al.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

protocol layer contains the actual protocol implementation. The ap-
plication layer contains the business logic that uses the consensus
protocol to provide the service to the end user.

3.1 Building Blocks
The communication layer can be implemented using most commu-
nication technologies. We chose Gorums as it simplifies quorum
communication and configuration management. The protocol layer
comprises sevenmodules: Consensus, leader selection, crypto, event
loop, synchronizer, command cache, and metrics, as shown in Fig. 1.

Some of these modules have only one default implementation,
while others have multiple implementations. All module implemen-
tations are interoperable. For example, the consensus module has
three implementations; Simplified (SHS), Chained (CHS), and Fast
HotStuff (FHS), and the selection of any one of these implementa-
tions have no impact on any other module implementations. We
developed a sample blockchain application to use the underlying
consensus protocol. This blockchain stores the blocks by their view
number and removes any forked blocks on every commit. The com-
position of the module implementations determines the behavior
of the replicas, and all replicas in the configuration use the same
module composition.

A module may interact with other modules to complete its oper-
ation. For example, the consensus module invokes the API of the
crypto module to generate the signature for voting on a proposal.
A module registry provides access to all the registered modules and
facilitates module interactions.

The module registry exposes two methods: RegisterModule() and
GetModule(). When a module implementation is loaded, the Regis-
terModule() is invoked with a unique name for its implementation
to register itself. For example, the Fast HotStuff implementation
registers its constructor and the unique name fasthotstuff. The Get-
Module() function takes the name of the module implementation
and returns the initialized object. Our registry uses the builder
design pattern to construct a graph of modules to form a replica
object, similar to the approach of existing micro-protocol architec-
tures [13, 14, 20, 21] and also promoted in textbook presentations [7].
A set of chosen or default module objects are passed to the builder
object. When the build() function is called, a container object is
returned, which holds all the initialized objects. This container
object is passed to all modules through the InitModule() function.
With this design, loosely coupled modules are composed to form
different behaviors.

Module implementations can gain access to other module inter-
faces through themodule registry. Implementing amodule interface
may sometimes require functionality beyond the module interface
API. Thus, the interface definition would have to be changed to
allow other modules to use these additional functions. However,
this may lead to implementation-specific functions in the interface,
resulting in interface explosion and dummy functions. To circum-
vent this problem, we have introduced an event loop mechanism to
invoke a module’s implementation-specific functionality by passing
events between the modules.

All modules have access to the event loop via its API. This allows
event-based interactions between modules, such that the events are
handled serially. Protocol execution is serialized through the event

loop as the messages received from other replicas are converted
to hotstuff-defined events and added using the AddEvent() method.
This avoids the need for mutexes whenmodules are handling events.
Events are passed using a publish-subscribe mechanism. Module
implementations can register their interest in specific event types
using either RegisterHandler() or RegisterObserver() API calls. There
can be multiple observers for each event type, but only one handler.
All observers are executed before the handler.

Apart from the publish-subscribe mechanism, the event loop
provides two additional functionalities: delayed event handling
and periodic event generation. AddTicker() method takes a call-
back function and time interval as input to periodically add the
event to the event loop, which is generated by the callback function.
AddTicker() can also execute periodic operations such as record-
ing protocol metrics. Delayed event handling postpones handling
an event until some other event type has been processed and is
achieved through the event loop’s DelayUntil() method. The Delay-
Until() method helps a replica handle out-of-order messages. For
example, in HotStuff, votes for the current view’s proposal are sent
to the leader of the next view. Thus, there may be scenarios where
the previous view’s proposal has yet to arrive at the current view’s
leader, while the proposal’s votes could already have arrived. To
handle this, the leader calls DelayUntil() to delay the processing of
these votes until the proposal arrives.

3.1.1 Protocol Execution. Leveraging the event loop, a single thread
executes the protocol logic synchronously, except for the signature
verification. The leader of the view asynchronously verifies the
received votes, and when a thread forms the quorum certificate, it
is shared with the protocol using the event loop. When a replica re-
ceives a new quorum certificate in the proposal, all the signatures in
the quorum certificate are verified in parallel. The communication
layer implemented with Gorums is multi-threaded, and each thread
converts these protobuf messages into protocol-defined events us-
ing a translation layer. These events are added into the event loop
to be processed by the module responsible for handling the events;
for example, the view synchronizer handles the event generated
upon receiving the New-View message.

4 TWINS-BASED TESTING
We have tested our HotStuff implementation by generating and
executing the test scenarios obtained using the Twins approach.
Twin replicas share the same ID and private key; thus, twins are
indistinguishable from a single replica for all the other replicas.
Generated test scenarios may contain Byzantine behaviors, which
has the potential to discover safety bugs in the implementation.

Our test framework can generate and execute test scenarios as a
single step or two separate steps. In the scenario generation step, all
the generated scenarios are written to files, and the execution step
reads the scenarios from the files to execute them. This prevents the
repeated generation of scenarios, thereby saving time and paralleliz-
ing the execution. This design of the test framework facilitates the
integration of continuous integration and continuous deployment
tools. It provides an opportunity to execute specific user-defined
scenarios written in the same format as the test generator.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

An Extensible Framework for Byzantine Fault-tolerant Protocols ApPLIED 2023, June 19, 2023, Orlando, FL, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

4.1 Test Scenario Generation
The test scenario generator requires the following parameters:
(i) replicas specifies the number of replicas, (ii) twins specifies how
many of the replicas should have a twin, (iii) partitions represent
the number of partitions in the cluster, such that replicas in one
partition cannot reach replicas in another. (iv) rounds specify the
number of views to run for each test scenario. (v) scenarios-per-file
gives the number of scenarios per output file. (vi) output gives the
location of the test scenario files. The test scenario generator takes
the above parameters as input to the following steps.

Step 1 generates all possible partition scenarios for the spec-
ified number of replicas and twins. For example with 4 replicas
{𝐴, 𝐵,𝐶, 𝐷}, 2 partitions and 1 twin {𝐴,𝐴′}, some sample partition
scenarios could be {{𝐴, 𝐵,𝐶}, {𝐴′, 𝐷}}, {{𝐴,𝐶}, {𝐴′, 𝐷, 𝐵}}.

Step 2 prunes the partition scenarios considered identical. Two
partition scenarios are considered identical if they result in identical
behavior by correct replicas. Partition scenarios produce identical
behavior only if the correct (non-twin) replicas switch positions
in the partitions. For example, the scenarios {𝐴, 𝐵}, {𝐴′,𝐶, 𝐷} and
{𝐴, 𝐷}, {𝐴′, 𝐵,𝐶}, are considered identical as they differ only in the
position of 𝐵 and 𝐷 replicas. Applying this pruning for the above
configuration results in only 6 partition scenarios.

Step 3 takes the partition scenarios generated in Step 2 and
assigns each partition scenario to all 𝑛 possible leaders. This is done
by computing the cross-product between partition scenarios and
leader assignments. Hence, for a test scenario with 𝑝 partitions,
after Step 3, 𝑛 · 𝑝 leader scenarios are generated.

Step 4 arranges the scenarios generated in the previous step
into the specified number of rounds. Test scenarios are generated
by assigning all possible leader scenarios to each round. If 𝑙 leader
scenarios are generated by Step 3 and 𝑟 rounds are configured then
a total of 𝑙𝑟 test scenarios are generated.

We provide an option to randomize the generated test scenarios
instead of sequentially generated scenarios. The benefit of random-
ization is that we can more quickly sample a broader diversity of
test scenarios. Thus, hopefully, finding bugs due to Byzantine be-
haviors more quickly as well. Our experience seems to indicate
that this is true. For reproducibility, we can seed the generator to
produce the same order of randomized test scenarios.

4.2 Test Scenario Execution
The scenario executor takes the following parameters: (i) input is
the location of the files containing the scenarios, (ii) the consen-
sus algorithm to be used for testing, and (iii) output specifies the
location to write the failed scenarios.

Test scenario execution uses all available CPUs. Before executing
the scenarios, replica objects and their modules are created, as
explained in Section 3. The twin replicas are initialized with the
same ID and private key. To simulate partitions with Twins, we
replace the original Gorums-based configuration module with a
mocked configuration module, which is responsible for delivering
messages. This mocked configuration module is then initialized
with all partition scenarios of the current test scenario.

If replica 𝐴 broadcasts a message to the configuration in view 𝑣 ,
the mocked configuration module delivers the message to replica 𝐵
iff 𝐵 is in the same partition as replica 𝐴 for view 𝑣 . To kickstart

a test scenario, the leader of the first view sends the proposal to
all reachable replicas. The event loop provides a Tick() function
to process events one at a time. This function moves the replicas
through the scenario’s views by executing the event on all replicas
before moving to the next event. The consensus module handles
messages received through the event loop and replies through the
configuration module. The leader module returns the ID of the
leader replica based on the leader selection module, so it is mocked
to return the leader ID based on the scenarios and rounds. After
completing all the views, each replica’s commit logs are analyzed
for safety violations. A test scenario is written to file if a safety
violation is found.

Appendix F of the Twins paper [2] reports on a safety violation
found in the Fast HotStuff protocol. The scenario involves four hon-
est replicas with no twins, divided into two partitions, running for
11 rounds. The authors later rectified this safety violation in version
7 of Fast HotStuff [15], and we initially implemented this corrected
version. Later we modified our implementation to the faulty ver-
sion, and we were also able to find the same safety violation using
our Twins testing framework.

Apart from the test scenarios derived using the Twins approach,
we have developed an extensive suite of unit tests to test our imple-
mentation. These test suites guard our code base against mistakes
during maintenance and the addition of new features.

5 EVALUATION
Our HotStuff implementation has 14K lines of Go code spread
over 100 files. Apart from the protocol implementation, it includes
the generated code from the protocol buffers, unit test suite, and
deployment tools. Additionally, a metrics module measures the
throughput as observed by the replicas and the latency at the clients.

The metrics module registers as a handler for the CommitEvent,
raised by the replica when a command is committed. These events
are counted until a TickEvent, which is raised periodically based
on a configured measurement interval. The tick event handler logs
all the measured metrics and resets the counters. This mechanism
can be extended to measure protocol-specific metrics, such as view
timeouts and the number of signature verifications.

5.1 Setup
We evaluated our implementation using a local cluster and virtual
machines on AWS EC2. Our local cluster consists of 30 machines,
and each node has 32 GB of RAM and 12 cores of Intel Xenon
processors with Hyper-Threading enabled. A 10 Gbps TOR switch
connects the nodes, and the network latency among them is less
than 1 ms. All cores have a maximum frequency of 3.3 GHz.

Each node, either physical or virtual machine, can host one or
more HotStuff replicas, and unless specified, all experiments are
run with one replica/client per node. Communication between the
replicas and the clients is secured through TLS, and the public
key required to establish trust is shared with replicas and clients
over ssh. Unless specified, all experiments are run with zero-sized
payloads in the client requests. The deployment procedure for the
experiments is explained in Section 5.5.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ApPLIED 2023, June 19, 2023, Orlando, FL, USA Gogada, Meling et al.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

·105

0

1

2

3

Throughput (op/sec)

La
te
nc
y
(s
ec
s)

4-5-200
4-5-800
4-10-200
4-10-800
7-5-200
7-5-800
7-10-200
7-10-800

Figure 2: Throughput vs latency for 4 and 7 replicas and 5 and 10 clients for
200 and 800 batch sizes with increasing load from the clients and no payload
in the requests

5.2 Performance Evaluation
We conducted experiments to understand the performance impact
of our design choices in common configurations of BFT evaluation.

Experiments show that our implementation provides similar
performance to other works [24, 27], is resilient to attacks, and
scales well up to 8 cores per machine.

5.2.1 Base Performance. We measured the throughput and latency,
varying the batch size, number of clients, and replicas. Replicas are
created with the default module implementations, and experiments
are conducted without customization. We ran the experiments with
5 and 10 clients for 4, 7, and 16 replicas and batch sizes 100, 200,
400, and 800. Fig. 2 depicts the throughput and latency for 4 and 7
replicas with 5 and 10 clients with batch sizes 200 and 800; other
results are not presented due to space constraints. Throughput
is the average number of commands executed per second at the
replicas, and latency is the average time taken to commit a request
as measured by the clients. The starting data point of each plot
represents the throughput and latency observed when each client
sends 20 × 𝑏𝑎𝑡𝑐ℎ 𝑠𝑖𝑧𝑒 concurrent requests, and the load is doubled
for subsequent data points. At the given start load, replicas can
readily fill the batches.

5.2.2 Resiliency Testing. To test the resiliency of our implementa-
tion, we introduced two faulty behaviors for the leaders, silent and
slow. A silent leader does not send the proposal to replicas, creating
a view timeout and causing a delay in committing a request. A slow
leader tries to induce a fork by creating a proposal by skipping the
parent with the grandparent as the block’s parent. This may lead
to discarding the block prepared in the previous view.

We performed experiments and observed the impact of slow and
silent leader faults on the throughput of a 13-node cluster. The
number of View-Timeouts increased exponentially for slow leader
faults and linearly for silent leader faults in the cluster as shown in
Fig. 4. The configuration with slow leader faults executed 50 times
more commands than the configuration with silent leader faults.
A silent leader causes timeout certificate creation and verification,
wasting time and CPU resources. Fig. 3 shows the impact of a recur-
ring slow leader fault on the cluster’s throughput. This shows that

our implementation can handle faulty leaders, and the throughput
recovered after the faulty behavior of the leaders ceased.

10 20 30 40 50 60 70 80 90
0

2

4

6

8
·104

Time (seconds)

Th
ro
ug

hp
ut

Figure 3: Impact of four slow leaders on the throughput of a 13-node cluster.
The experiment was conducted with 5 non-faulty clients at 100 batch size. A
replica remains slow leader for 15 seconds every 15 seconds throughout the
experiment.

0 2,000 4,000 6,000 8,000
1

2

3

4

Number of View-Timeouts per 100k commands

N
um

be
ro

ff
au
lts

silent slow

Figure 4: Impact of slow and silent leader faults on a 13-node cluster. The
experiment was conducted with 5 non-faulty clients at 100 batch size.

5.2.3 CPU Scaling. Fig. 5 shows how our implementation scales
with increasing cores enabled. As the figure shows, with two cores
enabled, we observe a throughput increase of more than 100 % com-
pared to a single core. This is because, with two cores, the crypto
module can concurrently verify the signatures in the quorum certifi-
cate. However, as expected, adding more than four cores only has a
limited effect. We note that only connection handling and signature
verification are parallelized, while a single thread executes the main
protocol logic to reduce possible sources of implementation errors.

5.2.4 Micro Benchmarks. As mentioned in Section 3, a replica’s
behavior is determined by selecting modules to form the replica
object. Since some modules have more than one implementation,
we generated micro-benchmarks to compare their performance.
We ran each experiment with 16, 32, 64, and 96 replicas with 4
replicas on each physical node. Ecdsa and bls12 implementations
of crypto module, fixed-leader and round-robin implementations of
leader-selection module are chosen for this evaluation.

Ecdsa module outperformed bls12 module as shown in Fig. 6.
Apart from the cryptographic complexity, the throughput differ-
ence can be partly attributed to the parallelized signature verifica-
tion in the ecdsa. However, with increasing configuration size, the

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

An Extensible Framework for Byzantine Fault-tolerant Protocols ApPLIED 2023, June 19, 2023, Orlando, FL, USA

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

difference in the throughput between ecdsa and bls12 modules is
decreasing as expected.

Fig. 7 depicts the throughput and latency for the round-robin and
fixed leader modules. For a configuration size of 16, the throughput
of the round-robinmodule is thrice that of the fixed leader selection
module. Since HotStuff uses a star topology with a fixed leader, the
network resources of the leader are quickly overwhelmed, resulting
in poor throughput. At a configuration size of 96, both modules
performed similarly due to the high network load.

5.2.5 WAN Evaluation. The HotStuff protocol is designed to run
in a WAN environment, and we evaluated our implementation in
a WAN-based setting using AWS. We used AWS EC2 services to
create 9 virtual machines (c4·2xlarge), each with 8 virtual cores with
15 GB RAM and a 1 Gbps network. These servers were distributed
across 4 AWS regions in the US; 5 servers were used as clients, and
4 as protocol replicas. Each region has a client and server co-located
with one region containing an additional client.

We conducted these experiments to understand the practical
performance expectations of our implementation. These experi-
ments are conducted similarly to the base evaluation as explained
in Section 5.2.1. At higher batch sizes and with low client load,
replicas must wait to fill their batches, leading to increased latency
and lower throughput, as shown in Fig. 8. This creates a distinctive
’U’ shape for higher batch sizes. However, for experiments with
payload, we did not observe the benefits of batching due to the
WAN links’ bandwidth limitations.

5.3 Performance Improvements
During the evaluation of our implementation, we realized that some
of our design choices were impacting performance. In this section,
we evaluate the impact of two performance optimizations.

5.3.1 Removal of Translation layer. To better understand the per-
formance of our implementation, we investigated the CPU and
memory profiles of the replicas. Apart from executing the protocol,
a significant amount of CPU time (∼16 %) is spent on garbage col-
lection. As explained in Section 3.1.1, whenmessages move from the
Communication layer to the Protocol layer, they are translated from

1 2 4 8
0

0.5

1

1.5

·105

Number of cores per node

Th
ro
ug

hp
ut

(o
p/
se
c)

100-batch 200-batch 400-batch 800-batch

Figure 5: Throughput for 4 replicas and 5 clients with 1, 2, 4, and 8 cores
enabled, and with batch sizes 100, 200, 400, and 800.

0 1 2 3 4

·104

0

2

4

6

Throughput (op/sec)

La
te
nc
y
(s
ec
s)

16-ecdsa
16-bls12
32-ecdsa
32-bls12
64-ecdsa
64-bls12
96-ecdsa
96-bls12

Figure 6: Throughput vs Latency of ecdsa and bls12 crypto modules for 16, 32,
64, and 96 replicas.

1 2 3 4

·104

0

0.5

1

1.5

Throughput (op/sec)

La
te
nc
y
(s
ec
s)

16-rr
16-fixed
32-rr
32-fixed
64-rr
64-fixed
96-rr
96-fixed

Figure 7: Throughput vs Latency of round-robin and fixed leader modules for
16, 32, 64, and 96 replicas.

0 0.2 0.4 0.6 0.8 1

·104

0

1

2

3

Throughput (op/sec)

La
te
nc
y
(s
ec
s)

0-100
0-200
0-400
0-800
64-100
64-200
64-400
64-800

Figure 8: Throughput vs latency: 4 replicas and 5 clients and different batch
sizes and payload size 64 bytes with increasing load from the clients in WAN
setup.

protobuf types to hotstuff-defined types. This translation avoids
tight coupling and makes our protocol implementation portable to
other RPC frameworks. However, while profilingmemory consump-
tion, we identified that the translation layer consumed more than
half of the allocatedmemory.We, therefore, removed the translation
layer to decrease the number of allocations and improve through-
put and latency. Compared to the base evaluation, we observed a
maximum of ∼18 % and ∼5 % throughput improvement with and
without payload, respectively, as shown in Fig. 9 and Fig. 10.

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ApPLIED 2023, June 19, 2023, Orlando, FL, USA Gogada, Meling et al.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

0.4 0.6 0.8 1 1.2 1.4 1.6

·105

1

2

3

Throughput (op/sec)

La
te
nc
y
(s
ec
s)

5-200
5-200-TL
5-800
5-800-TL
10-200
10-200-TL
10-800
10-800-TL

Figure 9: Throughput vs latency for 7 replicas with and without translation
layer for 5 and 10 clients with no payload. Graphs labeled with TL are from
replicas with the translation layer.

0.6 0.8 1 1.2 1.4

·105

0.5

1

1.5

2

Throughput (op/sec)

La
te
nc
y
(s
ec
s)

64 64-TL 256 256-TL
512 512-TL 1024 1024-TL

Figure 10: Throughput vs latency for 7 replicas with and without translation
layer for 5 clients with 64, 256, 512, and 1024 bytes payload in each request for
100 batch size. Graphs labeled with TL are from replicas with the translation
layer.

Fig. 11 and Fig. 12 depict the memory footprint of a replica with
and without the translation layer during the lifetime of the experi-
ment. The allocated memory is further divided into the memory
used by the protocol and communication layers. As expected, the
memory occupied by the communication layer remained the same
for both variants. Removing the translation layer, we observed
∼41 % and ∼14 % fewer allocations with and without payload, re-
spectively.

The protocol layer processes the commands as a batch. At lower
batch sizes, more batches get executed than at higher batch sizes,
so the percentage of saved memory is higher at lower batch sizes.
When batching is disabled, we observed that the replica allocated
∼44 % less memory without the translation layer. The results pre-
sented in the Fig. 11 and Fig. 12 represent the total memory used
by a replica during the lifetime of the experiment, and this varies
based on the number of commands executed in that configuration.
In Fig. 12, our network infrastructure scaled until a payload size of
512 bytes. However, for a payload size of 1024 bytes, we observed
decreased throughput, resulting in reduced memory allocation.

5.3.2 Crypto Cache. During the implementation of the protocol,
we observed that the quorum certificate is verified twice in the

0 100 200 400 800
0

1

2

·104

Batch size

To
ta
la
llo

ca
te
d
m
em

or
y
(M

B)

communication layer with TL protocol layer with TL

communication layer without TL protocol layer without TL

Figure 11: Memory allocated during the lifetime (60 sec) of a replica with and
without the translation layer (TL) for different batch sizes. The protocol layer
and communication layer memory profiles are captured separately.

0 256 512 1024
0

2

4

·104

Payload size

To
ta
la
llo

ca
te
d
m
em

or
y
(M

B)

communication layer with TL protocol layer with TL

communication layer without TL protocol layer without TL

Figure 12: Memory allocated during the lifetime (60 sec) of a replica with and
without the translation layer (TL) for different payload sizes. The protocol
layer and communication layer memory profiles are captured separately.

view success scenario. Once in the consensus module before cre-
ating a vote and again in the synchronizer module to update the

0 1 2 3 4 5 6

·104

4

7

13

16

19

Throughput

N
um

be
ro

fr
ep
lic
as

With Cache Without Cache

Figure 13: Impact of crypto cache on the throughput of 4, 7, 13, 16, and 19
replicas with 5 clients for a batch size of 100.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

An Extensible Framework for Byzantine Fault-tolerant Protocols ApPLIED 2023, June 19, 2023, Orlando, FL, USA

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

protocol state. Multiple verifications can be prevented if the con-
sensus module can indicate to the synchronizer module that the
quorum certificate is already verified. This would create strong
assumptions/dependencies among the modules. To prevent such
dependencies, we created a crypto cache as a thin layer over the
actual crypto module implementation.

This layer contains an LRU cache to store the quorum certificate
and hash of the message. With the cache, modules can verify the
quorum certificate multiple times with no performance penalty. All
the above experiments are conducted with default module imple-
mentations, and the crypto cache is enabled by default.

In this section, we like to quantify the performance benefit of
our design decision. Fig. 13 shows the impact of the crypto cache
on throughput for various configuration sizes. We observed higher
throughput gains for bigger configuration sizes and the maximum
throughput benefit of ∼60 % in a 19 replica configuration.

5.4 Testing with Twins
We used our Twins-based framework to test our implementation
and found an interesting bug. We found the bug in a 4-node con-
figuration with a single twin pair arranged in two partitions over
seven rounds. We encountered this bug while executing 600 million
generated test scenarios.

A summary of the bug is as follows: to commit a block 𝑏, the
protocol expects to commit all blocks between 𝑏 and the last com-
mitted block (𝑏𝑙𝑐). The commit() function recursively fetches the
parent of block 𝑏 until it reaches 𝑏𝑙𝑐 . If the block is unavailable at
the replica, it tries to fetch the block by its hash from a quorum
of other replicas. The recursive commit() function did not handle
a failure during the fetch operation and went on to commit the
current block, causing a safety violation. For example, assume 𝑏𝑙𝑐
→ 𝑏′′ → 𝑏′ → 𝑏 is the correct sequence of the committed blocks.
Assume further, a replica has 𝑏𝑙𝑐 as the last committed block and
is about to commit block 𝑏. It has to fetch and commit 𝑏′′ and 𝑏′.
Failure to fetch 𝑏′′ may lead to an incorrect chain 𝑏𝑙𝑐 → 𝑏′ → 𝑏. We
fixed the commit function to return an error if any of the remote
fetches failed and abandon committing the current block.

5.5 iago
We deploy our clients and replicas on many nodes, collecting logs,
metrics, and resource usage profiles from the nodes. These tasks
typically involve a fair amount of manual labor. We tried to au-
tomate these tasks with existing DevOps tools like Ansible and
puppet, but these tools were complicated, unreliable, and lacked
programmatic control over remote nodes. Therefore, we built an
in-house deployment framework iago, which can create clients and
replicas and fetch logs, metrics, and profiles from the remote nodes.
Currently, iago uses a wrapper over secure shell (SSH) to securely
communicate with the other nodes but is flexible enough to support
other mechanisms.

Iago defines a group abstraction representing all physical nodes
available for deployment. A task is executed simultaneously on the
nodes using the group object and determines the remote replica’s
behavior in failure scenarios. Using this abstraction, we load the
executable binary and create the necessary environment for it to
run. A designated controller node is used to start a deployment or

experiment. Using iago, the controller node creates SSH sessions for
all the nodes. These sessions perform RPC calls on the remote nodes
to create replicas and clients and to start the protocol based on the
administrator’s configuration. After completing the experiment,
the nodes send the logs, metrics, and profiles to the controller node
over the same SSH sessions.

6 CONCLUSIONS
Implementing systems and protocols whose purpose is to tolerate
and handle failures must not become the root cause of such failures.
The difficulty of implementing fault-tolerant systems correctly is
apparent from a history spanning several decades of research. We
have replicated several variants of the HotStuff protocol using
an extensible module framework and a typical event loop. Our
implementation has undergone significant evaluation, modifying it
for better performance.

Our repository is publicly available at github.com/relab/hotstuff
and we welcome well-written and documented contributions. Fol-
lowing state-of-the-art research, we are continuously adding new
implementations to crypto, synchronizer, and consensus modules.
A CI/CD pipeline is being set up to monitor the correctness and
performance impact of the new features.

In summary, we have presented an extensible, resilient, and
performance-driven framework to build new BFT protocols or re-
produce existing ones.

ACKNOWLEDGMENTS
This work is partially funded by the BBChain and Credence projects
under grants 274451 and 288126 from the Research Council of
Norway.

REFERENCES
[1] Pierre-Louis Aublin, Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and

Marko Vukolić. 2015. The Next 700 BFT Protocols. ACM Trans. Comput. Syst. 32,
4, Article 12 (jan 2015), 45 pages. https://doi.org/10.1145/2658994

[2] Shehar Bano, Alberto Sonnino, Andrey Chursin, Dmitri Perelman, Zekun Li,
Avery Ching, and Dahlia Malkhi. 2020. Twins: BFT Systems Made Robust.
https://doi.org/10.48550/ARXIV.2004.10617

[3] Alysson Bessani, João Sousa, and Eduardo E.P. Alchieri. 2014. State Machine
Replication for the Masses with BFT-SMART. In 2014 44th Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Networks. Institute of Electrical
and Electronics Engineers, Atlanta, GA, USA, 355–362. https://doi.org/10.1109/
DSN.2014.43

[4] Dan Boneh, Manu Drijvers, and Gregory Neven. 2018. Compact Multi-signatures
for Smaller Blockchains. In Advances in Cryptology ASIACRYPT 2018. Springer
International Publishing, Brisbane, QLD, Australia, 435–464.

[5] Ethan Buchman. 2016. Tendermint: Byzantine Fault Tolerance in the Age of
Blockchains. Ph. D. Dissertation. University of Guelph, Guelph, ON, Canada.

[6] Vitalik Buterin and Virgil Griffith. 2017. Casper the Friendly Finality Gadget.
https://doi.org/10.48550/ARXIV.1710.09437

[7] Christian Cachin, Rachid Guerraoui, and Lus Rodrigues. 2011. Introduction to
Reliable and Secure Distributed Programming (2nd ed.). Springer Publishing
Company, Incorporated, Salmon Tower Building, New York City, USA.

[8] Miguel Castro and Barbara Liskov. 1999. Practical Byzantine Fault Tolerance.
In Proceedings of the Third Symposium on Operating Systems Design and Imple-
mentation (New Orleans, Louisiana, USA) (OSDI ’99). USENIX Association, USA,
173–186.

[9] Neil Giridharan, Heidi Howard, Ittai Abraham, Natacha Crooks, and Alin
Tomescu. 2021. No-Commit Proofs: Defeating Livelock in BFT. Cryptology
ePrint Archive, Paper 2021/1308. https://eprint.iacr.org/2021/1308

[10] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019.
SBFT: A Scalable and Decentralized Trust Infrastructure. In 2019 49th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).

9

https://doi.org/10.1145/2658994
https://doi.org/10.48550/ARXIV.2004.10617
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.1109/DSN.2014.43
https://doi.org/10.48550/ARXIV.1710.09437
https://eprint.iacr.org/2021/1308

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ApPLIED 2023, June 19, 2023, Orlando, FL, USA Gogada, Meling et al.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Institute of Electrical and Electronics Engineers, Portland, OR, USA, 568–580.
https://doi.org/10.1109/DSN.2019.00063

[11] Google. 2022. gRPC: A high performance, open source universal RPC framework.
https://grpc.io Accessed: 2022-05-24.

[12] Google. 2022. Protocol Buffers. https://developers.google.com/protocol-buffers
Accessed: 2022-05-24.

[13] Mark Hayden. 1998. The Ensemble System. Ph. D. Dissertation. Dept. of Computer
Science, Cornell University.

[14] Norm C. Hutchinson and Larry L. Peterson. 1991. The x-Kernel: An architecture
for implementing network protocols. IEEE Trans. Software Eng. 17, 1 (Jan. 1991),
64–76.

[15] Mohammad M. Jalalzai, Jianyu Niu, Chen Feng, and Fangyu Gai. 2020. Fast-
HotStuff: A Fast and Resilient HotStuff Protocol. https://doi.org/10.48550/ARXIV.
2010.11454

[16] Leander Jehl. 2021. Formal Verification of HotStuff. In Formal Techniques for
Distributed Objects, Components, and Systems: 41st IFIP WG 6.1 International
Conference, FORTE 2021, Held as Part of the 16th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2021, Valletta, Malta, June 14–18,
2021, Proceedings (Valletta, Malta). Springer-Verlag, Berlin, Heidelberg, 197–204.
https://doi.org/10.1007/978-3-030-78089-0_13

[17] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. 2010. Zyzzyva: Speculative Byzantine Fault Tolerance. ACM Trans.
Comput. Syst. 27, 4, Article 7 (jan 2010), 39 pages. https://doi.org/10.1145/
1658357.1658358

[18] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzantine
Generals Problem. ACM Trans. Program. Lang. Syst. 4, 3 (jul 1982), 382–401.
https://doi.org/10.1145/357172.357176

[19] Tormod Erevik Lea, Leander Jehl, and Hein Meling. 2017. Towards New Ab-
stractions for Implementing Quorum-Based Systems. In 2017 IEEE 37th Inter-
national Conference on Distributed Computing Systems (ICDCS). "Institute of
Electrical and Electronics Engineers", Atlanta, GA, USA, 2380–2385. https:
//doi.org/10.1109/ICDCS.2017.166

[20] Hein Meling and Alberto Montresor. 2009. Type-safe Dynamic Protocol Compo-
sition in Jgroup/ARM. In Proceedings of the 3rd International DiscCoTec Workshop
on Middleware-Application Interaction (Lisbon, Portugal) (MAI ’09). ACM, New
York, NY, USA, 1–6. https://doi.org/10.1145/1566966.1566967

[21] Hugo Miranda, Alexandre Pinto, and Luis Rodrigues. 2001. Appia, a flexible
protocol kernel supporting multiple coordinated channels. In Proceedings of the
21st International Conference on Distributed Computing. IEEE, Phoenix, Arizona,
707–710.

[22] Gina Moraila, Akash Shankaran, Zuoming Shi, and Alex M Warren. 2014. Mea-
suring reproducibility in computer systems research. PLoS Comput Biol 9 (2014),
37 pages.

[23] Fred B. Schneider. 1990. Implementing Fault-tolerant Services Using the State
Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4 (Dec. 1990), 299–319.
https://doi.org/10.1145/98163.98167

[24] Xiao Sui, Sisi Duan, and Haibin Zhang. 2022. Marlin: Two-Phase BFT with
Linearity. In 2022 52nd Annual IEEE/IFIP DSN. 54–66. https://doi.org/10.1109/
DSN53405.2022.00018

[25] The Diem Team. 2021. DiemBFT v4: State Machine Replication
in the Diem Blockchain. https://developers.diem.com/papers/
diem-consensus-state-machine-replication-in-the-diem-blockchain/
2021-08-17.pdf

[26] Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. 2018. Distributed
System Development with ScalaLoci. Proc. ACM Program. Lang. 2, OOPSLA,
Article 129 (Oct. 2018), 30 pages. https://doi.org/10.1145/3276499

[27] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abra-
ham. 2019. HotStuff: BFT Consensus with Linearity and Responsiveness. In
Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing
(Toronto ON, Canada) (PODC ’19). Association for Computing Machinery, New
York, NY, USA, 347–356. https://doi.org/10.1145/3293611.3331591

[28] Yuan Yu, Panagiotis Manolios, and Leslie Lamport. 1999. Model Checking TLA+
Specifications. In Correct Hardware Design and Verification Methods, Laurence
Pierre and Thomas Kropf (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
54–66.

10

https://doi.org/10.1109/DSN.2019.00063
https://grpc.io
https://developers.google.com/protocol-buffers
https://doi.org/10.48550/ARXIV.2010.11454
https://doi.org/10.48550/ARXIV.2010.11454
https://doi.org/10.1007/978-3-030-78089-0_13
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/357172.357176
https://doi.org/10.1109/ICDCS.2017.166
https://doi.org/10.1109/ICDCS.2017.166
https://doi.org/10.1145/1566966.1566967
https://doi.org/10.1145/98163.98167
https://doi.org/10.1109/DSN53405.2022.00018
https://doi.org/10.1109/DSN53405.2022.00018
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://developers.diem.com/papers/diem-consensus-state-machine-replication-in-the-diem-blockchain/2021-08-17.pdf
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3293611.3331591

	Abstract
	1 Introduction
	2 Background
	2.1 Byzantine Fault Tolerance
	2.2 Validation and Verification

	3 Architecture
	3.1 Building Blocks

	4 Twins-based Testing
	4.1 Test Scenario Generation
	4.2 Test Scenario Execution

	5 Evaluation
	5.1 Setup
	5.2 Performance Evaluation
	5.3 Performance Improvements
	5.4 Testing with Twins
	5.5 iago

	6 Conclusions
	Acknowledgments
	References

