
Eiffel: Extending Formal Verification of Distributed
Algorithms to Utility Analysis

Arian Baloochestani, Leander Jehl
Department of computer science and electrical engineering

University of Stavanger
Stavanger, Norway

arian.masoudbaloochestani@uis.no, leander.jehl@uis.no

Abstract—The security of distributed systems, such as
blockchains, relies heavily on the active participation of sufficient
participants within the network. In order to incentivize such
participation, different blockchains implement different reward-
ing mechanisms. However, for these mechanisms to be effective,
it is essential that they are fair and accurately implemented,
taking into account the rational participants. Consequently,
utility analysis plays a vital role in assessing the efficacy of
these mechanisms. Formal verification methods, such as TLA+,
are commonly employed to ensure the correctness of distributed
systems, including blockchains. However, the application of these
methods for utility analysis remains relatively unexplored.

In this paper, we propose Eiffel, a novel approach that extends
the formal verification of distributed systems to encompass utility
analysis. By leveraging TLA+, Eiffel enables the analysis of
rewarding mechanisms and the detection of potential attacks.
Eiffel focuses explicitly on the concept of Nash equilibrium,
a fundamental notion in game theory that holds significant
importance in utility analysis. Through the use of Eiffel, we
demonstrate its versatility with different specifications, high-
lighting its applicability in committee-based blockchains and
the Tendermint consensus algorithm. Our analyses show the
effectiveness of Eiffel in evaluating rewarding mechanisms and
identifying potential vulnerabilities.

Index Terms—Formal verification, TLA+, Game theory, Nash
Equilibrium,

I. INTRODUCTION

Various industries have adopted blockchain technology due
to its ability to enable decentralization and transparency
through a shared and immutable ledger [1]. Consensus al-
gorithms play a critical role in blockchain networks by fa-
cilitating agreement among distributed nodes. Proof-of-Work
(PoW) and Proof-of-Stake (PoS) are the most popular consen-
sus algorithms used by various blockchains. However, they
suffer from drawbacks such as resource consumption and
security vulnerabilities [2], [3]. Alternatively, some protocols
use Byzantine Fault Tolerance (BFT) protocols [4]. These
blockchains, referred to as the committee-based blockchains,
delegate block creation and validation responsibilities to a
selected committee of nodes, offering advantages such as
scalability, energy efficiency, and enhanced security. Among
the committee-based blockchains, Tendermint [5] has become
a popular solution due to its robust and efficient consensus
algorithm.

The security and performance of consensus algorithms di-
rectly depend on the active participation of a sufficient number

of participants. Therefore, different rewarding mechanisms are
designed to incentivize participation. This is especially true for
committee-based blockchains, which rely on the participation
of a correct majority- The reward mechanisms need to be fair,
meaning that the reward distribution has to be proportional to
the participants’ work contribution [6]. If a protocol rewards all
participants equally regardless of their merit, rational processes
skip some parts of the protocol. This problem, known as free
riding, eventually hurts the protocol security.

While formal verification methods, such as TLA+ [7], are
commonly used to abstract and verify distributed systems, their
application to analyzing rewarding mechanisms in blockchains
remains relatively unexplored. Instead, alternative methods, in-
cluding game-theoretic notions, are employed to analyze utility
and rational behavior in such systems. Nash equilibrium is a
fundamental concept in game theory that represents a stable
state in which no player has an incentive to unilaterally deviate
from their chosen strategy, given other players’ strategies.
The concept of Nash equilibrium is especially important in
designing reward mechanisms. If a protocol’s correct behavior
is a Nash equilibrium, then it is in the best interest of rational
processes to follow the protocol since deviation results in
losing reward.

In this paper, we propose Eiffel, a novel approach that is
added as an extension in formal verification of distributed
systems to enable utility analysis. By leveraging TLA+, Eiffel
enables the verification of Nash equilibrium within reward-
ing mechanisms. Our approach employs a dual instantiation
method, where two different instances of a given specification
are compared. In one of the instances, all processes entirely
follow the protocol, while in the other one, a rational process
deviates. Using an invariant, Eiffel compares the utility of
the rational process in both instances and, therefore, identifies
potential Nash equilibria.

To demonstrate the applicability of Eiffel, we present a
simplified abstraction of committee-based blockchains, where
a selected committee utilizes a BFT protocol [4] protocol
to achieve consensus. We apply Eiffel to analyze different
rewarding mechanisms within this context. Furthermore, we
validate the versatility of Eiffel by applying it to an exist-
ing specification of the Tendermint consensus algorithm [5],
showcasing how Eiffel can be adapted to different TLA+

specifications with minimal modifications. This is important

since there are several TLA+ specifications available for well-
known consensus algorithms such as PBFT [8], HotStuff [9],
and Tendermint [10], [11].

In summary, we make the following contributions:
• We introduce Eiffel, a novel dual instantiation method

that enables utility analysis in distributed systems using
TLA+.

• We demonstrate the application of Eiffel in verifying
Nash equilibrium, a crucial notion in utility analysis.

• We apply Eiffel to analyze different rewarding mecha-
nisms within committee-based blockchains using a sim-
plified specification.

• We extend an existing Tendermint specification by incor-
porating rewarding mechanisms and apply Eiffel to detect
potential attacks, such as free riding.

• We showcase the effectiveness of Eiffel in enhancing the
security and performance of distributed systems through
utility analysis.

II. BACKGROUND

A. Committee-based Blockchains

Blockchain is a technology used for maintaining a shared
ledger between multiple parties in a decentralized and dis-
tributed manner. Blockchain is immutable, transparent, and
secure. The security and integrity of blockchains are guar-
anteed through consensus algorithms. Nodes decide what to
append to the blockchain and in which order using consensus
algorithms. Among all consensus algorithms, PoW and PoS
have been widely used by various blockchains where a single
node is selected to create a new block. However, due to
the tremendous recourse consumption of PoW and many
security problems in PoS, many blockchains have started to
adopt BFT protocols as their consensus algorithm [2], [3].
These blockchains, referred to as committee-based, often put
a committee in charge of producing new blocks instead of a
single node. Most committee-based blockchains are leader-
based [5], [12], [13]. In these blockchains, the consensus
process starts with the round leader proposing a block. Then,
other committee members verify the proposed block and vote
for it through multiple rounds of communication. The block
is committed if a majority of the committee members vote for
it.

Tendermint is a committee-based blockchain framework
adopted by many blockchain platforms such as Cosmos [14].
In Tendermint, a set of committee members known as valida-
tors form the committee. In each turn, one of the validators is
selected as the proposer after a round-robin scheme. Validators
use an algorithm similar to Practical Byzantine Fault Tolerance
(PBFT) as the consensus algorithm to vote and decide on the
validity of the proposed block. The voting process consists
of three steps: pre-vote, pre-commit, and commit. In each
step, each process broadcasts its signed message to all other
validators. Then, each validator verifies the received messages
and moves to the next step if it collects enough messages. If a

block gets enough commit messages, it is considered approved,
and processes move to the next round.

B. Nash Equilibrium
Nash equilibrium is a concept in game theory that represents

a stable state in which none of the players is incentivized
to change their strategy. Nash equilibrium analyzes games
with rational players trying to maximize their utility. In these
games, each player chooses their strategy to better respond
to other players’ strategies. Nash equilibrium is reached when
each player’s strategy is the best response considering other
players’ strategies. In other words, a state is a Nash equilib-
rium if no player can improve their utility by changing their
strategy while other players’ strategies are unchanged.

While Nash equilibrium does not guarantee the optimal
state, it is still widely used for analyzing the rational player’s
behavior in different fields. In decentralized setups such
as blockchains, it is important that all participants cooper-
ate. Thus having a system in which following the protocol
by all players is a Nash equilibrium is desirable. There-
fore, many have analyzed the rational behavior in different
blockchains, specially committee-based blockchains, and in-
vestigated whether following the protocol is a Nash equi-
librium [15]–[18]. However, such analyses are not always
accessible due to the complexity of such systems and often
rely on different assumptions and simplifications.

C. TLC Model Checking
TLA+ is a formal specification language based on the

Temporal Logic of Actions (TLA) that allows modeling
concurrent systems on a high level [7]. Using TLA+, it is
possible to verify and analyze distributed systems through
mathematical descriptions of the behavior of their components.
TLA+ enables describing the systems through abstraction
using variables, state transitions, actions, and temporal proper-
ties. It also allows proving either safety properties (something
bad never happens) or liveness properties (something good
eventually happens). Most TLA+ specifications are in the
form of Init ∧ □[Next]v ∧ L. Init specifies the initial state
and initializes the variables. The transition between states is
determined by Next, with a given tuple of all specification
variables v and a liveness property L.

Temporal Logic Checker (TLC) [19] is a model checker that
explores all possible reachable states in a TLA+ specification.
TLC allows for checking specified properties called invariant
against the explored system states and determining whether
they hold. Each invariant can be a safety condition or a fair-
ness constraint, providing insight into the system’s behavior.
Also, TLC enables tracing and debugging the specification by
generating examples of the violation of the invariants.

III. METHODOLOGY

Here we present our method, Eiffel, to identify possible
Nash equilibria in a given specification using TLA+. We first
discuss the requirements an input specification must fulfill
before Eiffel is applied to it. Then we discuss the specification
of Eiffel in detail.

A. Input Specification Requirements

Given specifications need to fulfill some requirements to fit
in the context of Eiffel. First, as Eiffel is designed to prove
Nash equilibrium, an underlying specification needs to have
well-defined utility functions for all participants in the system.
Eiffel expects the given specification to have a variable for
keeping track of each participant’s utility (costs and rewards).
This variable must be a function that maps each process to its
utility.

To prove that a certain set of actions is Nash equilibrium, we
need to compare players’ utilities when following the protocol
and deviating. The deviation from the protocol can be in
two different ways. The players can skip some parts of the
protocol and not participate or alter some actions. Therefore,
Eiffel requires the underlying specifications to separate actions
that can be deviated and actions that must be followed. For
example, for a rational player to be able to skip one specific
step in the algorithm, this step has to be a separate action.

In addition, since Eiffel only verifies the Nash equilibria
in the final states, it expects a state condition in the given
specification that checks whether the current state is a final
state.

B. Eiffel

Here we present Eiffel, a method in TLA+ that checks
whether a certain scenario is a Nash equilibrium in a given
specification. In TLA+ model checking, we can verify proper-
ties that are either true or false on a single execution. However,
to check whether a scenario is a Nash equilibrium, we need
to compare the players’ utility when following the scenario
with the utility of deviating from the scenario. This makes
Nash equilibrium a hyperproperty, and since it is a predicate
on a set of executions, it cannot be verified without self-
composition [20]. Therefore, the main idea behind Eiffel is to
initialize two instances of the input specification and compare
their states.

Figure 1 shows an overview of Eiffel. Eiffel first creates
two instances from the input specification. The variables of
each instance are assigned with a corresponding variable
inside Eiffel. Note that the corresponding variables for the
two instances need to be different; therefore, two versions are
needed for each variable. On the other hand, having only one
version of each constant is enough since both instances use
the same constants. In the Init predicate, both instances are
initialized using their Init predicate, and one of the system
participants is randomly selected as the rational player.

In the Next predicate, we define the transition of both in-
stances. Since we want to compare the corresponding variables
of the two instances in similar states, each action in the
Next predicate should transit both instances to the same state.
However, transiting to the same state does not mean following
the same strategy. While all processes in the first instance
completely follow the protocol, in the second instance, one
of the processes deviates. For example, if the processes are
supposed to broadcast a certain message to transit from state
A to state B, one of the processes in the second instance may

Init

Participation

p =

Init

Instanciation

 == INSTANCE SpecG1 == INSTANCE SpecG2

Init

Rational

Participate

Participate Unchanged

No Yes

Rewarding

Profit[p] += R Profit[p] += R

Profit[p] -= C

Profit[p] -= C

Terminated Terminated

Final State

Final State Final State

Equilibrium Checker
Invariant

Profit[] Profit[]

Fig. 1. An overview of Eiffel. Eiffel creates two instances of the given
specification and randomly selects one of the players to be rational. It then
allows the rational player to skip some parts of the protocol in one of the
instances while following the protocol completely in the other one. When the
protocol reaches the final state, an invariant for verifying the equilibrium is
checked.

not broadcast any message, but it still transits to state B. This
further allows to have a comparison between corresponding
states having different strategies.

When both instances reach a final state, an invariant is
checked to identify possible equilibria. The invariant compares
the profits gained by the processes in both instances, and it
ensures that the profit gained by the rational process while
behaving is more or equal to when it deviates. If the invariant
is violated, it shows that it is possible to gain more by misbe-
having, proving that the current strategy is not an equilibrium
in the system.

In the next section, we look at a simple example to better
show how the methodology works.

IV. COMMITTEE-BASED BLOCKCHAINS ANALYSIS

Here we present a simple specification of committee-based
blockchains in TLA+, and then we analyze underlying re-
warding mechanisms through Eiffel. As Figure 2 illustrates,
we follow a simple propose-vote-commit procedure presented
in [17]. In this abstraction, first, a leader is selected among the
processes and proposes a block. Then, other processes validate
the block and vote for it. If enough votes are gathered for a
block, it is committed. We consider a cost when processes vote
for a block and a block reward when a block is committed.

Select leader at
round r

Leader proposes
a block

Processes vote
for the proposed

block

Block is
committed

Cost Reward

Fig. 2. The abstraction of the committee-based blockchains.

The rewarding mechanism determines which processes receive
the reward. Note that both costs and rewards are considered
constant, i.e., the same reward is always given to the processes
despite the rewarding mechanism.

A. Specification detail

1) variables and constants: There are two constants in
the specification. A constant set Processes is defined as
the list of processes ({P1, P2, ..., Pn}) in the system. Each
process proposes one of the blocks in the constant set Blocks
({B1, B2, ..., Bn}) when it is a leader. Other variables defined
in the specification are as follows:
(a) Blockchain: Blockchain is a variable for keeping track of

the blocks in the blockchain. This variable is a function
from each block to a list of properties such as the parent
block, the round of the block, the set of processes who
voted for this block, whether the block is committed,
and whether the block is decided. The difference between
committed and decided is that a block may be decided
by the processes (all the processes made their decision
about whether to vote or not vote for the block), while it
is not committed due to needing more votes.

(b) Decided: This variable determines whether a process has
received and validated the block. Decided is a function
from the set of processes to a boolean value. Note that
Decided is TRUE for a process that validated the new
block but has not voted for it yet.

(c) Utility: This variable is a function from processes to an
integer indicating the corresponding profit. Note that the
utility of a process decreases when it endures costs such
as voting and increases when it gains block reward.

(d) NewBlock: This variable holds the block proposed in the
current round. It changes from one round to the other.

2) System states and actions: In the initial state, one of the
blocks is randomly selected as the genesis and NewBlock is
set to it. The parent of all blocks is set to themselves, and
their round is set to -1, except for the genesis block, whose
round is 0. The value of Decided is considered TRUE, and
the values of Utility are set to 0 for all processes.

The procedure begins with selecting one of the processes as
the leader. The leader proposes one of the remaining blocks
(a block with a round equal to -1). The value of Blockchain
for the proposed block is changed to the last committed block.
Then, as long as NewBlock is not decided (at least one of the

TABLE I
RESULTS OF ANALYZING DIFFERENT REWARDING SCHEMES IN

COMMITTEE-BASED BLOCKCHAINS USING EIFFEL.

Rewarding
Strategy Everyone votes No one votes

Equilibrium Invariant Equilibrium Invariant
Reward everyone No Violated Yes -

Reward only the leader No Violated Yes -
Reward the voters Yes - Yes -

processes has not still validated it), and it is not yet committed,
one of the processes that have not yet voted for this block is
selected to validate the block and vote. This action changes
the value of Decided for the process to TRUE. The Utility
of the process is reduced if it votes. At last, if NewBlock has
enough votes, it is committed. The processes Utility are then
updated based on the rewarding mechanism.

B. Equilibrium Analysis

In committee-based blockchains, the protocol’s security is
guaranteed through the active participation of all committee
members in block verification and voting. If the protocol
allows for free riding, rational processes skip some parts
of the protocol, which eventually makes the system less
secure. Therefore, it is important to make sure the reward
mechanism discourages free riding. This can be analyzed by
checking whether everyone participating in the system is a
Nash equilibrium.

Game theoretical analysis shows that in committee-based
blockchains, participation of all processes is a Nash equi-
librium if we reward only those who have voted for the
committed block [17]. However, if we reward all processes
or only the leader, participation of all processes is no longer a
Nash equilibrium. Figure 3 shows all possible outcomes in
a small example with only three processes under different
reward mechanisms. As the example shows, if we want to
check whether a certain strategy is a Nash equilibrium, we
need to compare it with possible states in which only one
of the players deviates. For example, for checking state a
in Figure 3, we need to compare it with states b, c, and
e. The same comparison happens in Eiffel by creating two
different instances of the initial specification. The first instance
results in the desirable state (state a), while the other instance
randomly picks one player to deviate, resulting in one of the
other possible states (states b, c, and e).

Table I shows the results of analyzing two different strate-
gies (everyone votes and no one votes) under the three
mentioned rewarding mechanisms using Eiffel. Note that the
invariant is not violated when a strategy is a Nash equilibrium.
Eiffel, therefore, confirms the previous analysis that only
rewarding the active voters results in everyone voting to be
a Nash equilibrium [17]. Consequently, we can use Eiffel as
an extra tool to confirm whether a specific strategy results in
a Nash equilibrium.

V. TENDERMINT ANALYSIS

This section uses a one-shot consensus Tendermint specifi-
cation [11] including all algorithmic details to show how Eiffel

9 9 9
9 -1 -1
9 9 9

9 9 10
9 -1 0
9 9 0

9 10 9
9 0 -1
9 0 9

-1 0 0
-1 0 0
-1 0 0

10 9 9
10 0 0
0 9 9

0 -1 0
0 -1 0
0 -1 0

0 0 -1
0 0 -1
0 0 -1

0 0 0
0 0 0
0 0 0

 misbehaves

 misbehaves

 misbehaves

Reward all
Reward leader
Reward voters

a b c d e f g h

Fig. 3. All possible final states in the committee-based blockchain specification having three processes.

can be used with a fully detailed specification created for a
different purpose. The specification follows the pseudo-code
in [21]. The detailed consensus protocol is the main difference
between this specification and the simplified specification in
Section IV. The consensus protocol has four steps: proposal,
pre-vote, pre-commit, and decide. In each step, the processes
broadcast their messages to all other processes in the system.

Since the original specification does not include rewards,
we made some modifications to keep track of the process
utilities. We add an extra variable Utility to the specification.
We consider a cost to broadcasting messages, and the pro-
cesses’ utilities are reduced once they participate in any of the
consensus steps. We also add an extra state for rewarding the
processes. This is the very last state in the specification, and
the processes get rewarded based on the reward mechanism.

We also separate the actions that can be skipped from other
actions. In this way, while correct processes always follow the
protocol no matter the cost, a rational process can skip costly
actions such as broadcasting messages.

We use Eiffel to check whether everyone following the
protocol is a Nash equilibrium in Tendermint. We run the
specification with three processes where at least two votes are
needed in each phase. Broadcasting a message to the network
costs C = 1 each time, and a constant reward R = 10 is given
out when a block is approved. We first reward all processes
evenly despite their contribution. When running Eiffel, the
equilibrium invariant is violated, meaning everyone following
the protocol is not a Nash equilibrium. For example, one
possible result for the variable Utility when every process
follows the protocol is ⟨8, 8, 8⟩ for P1, P2, and P3 respectively.
When P2 is selected as the rational process and skips the
consensus steps, the final profits are ⟨8, 10, 8⟩. This shows that

TABLE II
THE NUMBER OF DISTINCT STATES FOR THE TENDERMINT SPECIFICATION

AND EIFFEL USING THE SAME SPECIFICATION WITH THE DIFFERENT
NUMBER OF PROCESSES.

Method
Distinct States

3 processes 4 processes 5 processes

Tendermint specification 10,714 47,778 890,147

Eiffel using Tendermint specification 31,352 194,627 7,413,895

Tendermint suffers from free riding, where processes may get
more profit by skipping some rounds of the protocol. One
possible solution to the free riding problem is to reward only
processes who participated in the consensus. We model this
by tracking the processes that participated in all consensus
steps and rewarding only those. The equilibrium invariant is
not violated when we run Eiffel using this rewarding scheme,
proving that everyone participating here is a Nash equilibrium.

To measure the scalability of Eiffel, we run the specification
with and without Eiffel. The results are shown in Table II. We
see that Eiffel takes longer to run due to running two different
instances of the specification. This blow-up increases with the
number of processes. Therefore, extending this analysis to very
complex specifications may require other techniques.

VI. COSMOS ANALYSIS

In this section, we apply Eiffel on a reward scheme designed
for the Tendermint algorithm. We show that Eiffel can be used
to analyze attacks and parameter settings. We use Cosmos [22]
rewarding scheme as a use case since it is a well-developed
blockchain platform using Tendermint as its consensus algo-
rithm.

Vote omission

Free riding

Init Select
proposer p?For p in

processes

Propose a
block Pre-vote Pre-commit Decide Give reward

Collect
rewards

Pre-vote Pre-commit Decide

For q in
processes

Proposer

Validator

Fig. 4. The abstraction used for modeling rational behaviour in Cosmos. The red boxes indicated the states that a rational process might skip.

In most blockchain platforms, transaction fees constitute an
important part of block rewards. Since the transaction fees
vary considerably from block to block, giving out a constant
reward to every process is not always possible. Therefore,
many current schemes, such as Cosmos, divide the rewards
equally between all active processes. These schemes normally
put leaders responsible for detecting active members through
the messages they receive. We used the abstraction illustrated
in Figure 4 to model Cosmos rewarding scheme. We first mod-
ified the rewarding procedure in the Tendermint specification
to divide the rewards between all active processes. Also, we
put the leader in charge of deciding whom to reward. As shown
in Figure 4, the preliminary Cosmos specification allows for
misbehavior based on the process role. While a committee
member is able to skip some rounds of the underlying consen-
sus protocol, leaders can skip rewarding some of the processes.
Thus in order to have a Nash equilibrium, we should have an
equilibrium for both the leader and other processes.

When running Eiffel using this preliminary Cosmos specifi-
cation, the equilibrium invariant is violated when the rational
process is the round leader. The results show that a rational
leader gets a larger fraction of the reward by omitting oth-
ers. Therefore, while using this rewarding scheme, Cosmos
no longer suffers from free riding; it is prone to another
attack called vote omission attack. In this attack, the leader
deliberately ignores some of the messages to increase its own
share of the rewards [23]. Therefore, using this rewarding
scheme, while everyone participating is a Nash equilibrium,
the leader acting correctly and rewarding everyone is not a
Nash equilibrium.

Cosmos addresses vote omission attacks by giving an ad-
ditional bonus to the leaders. It is designed in a way to
incentivize the inclusion of more processes. The bonus is linear
based on the number of committee members the leader decides
to reward and is calculated as follows:

bonus =

(
bc +

(
v − t

n− t

)
bv

)
R (1)

Where v is the number of processes the leader rewards, n
is the committee size, t is the minimum number of messages
needed for the block to be committed, R is the total reward,
and bc and bv are the fractions of the reward considered as the

constant and variable bonus respectively. At the time of writing
the paper, bc and bv are equal to 1% and 4% respectively,
resulting in the bonus to range between 1% and 5% of the
total reward [22].

5 10 15 20 25 30

Rational process weight (%)

4

6

8

10

12

14

16

M
ini

m
um

 b
on

us
 (%

)

Invariant is not violated
Invariant is violated

Fig. 5. The minimum bonus where the invariant is not violated considering
different weights for the rational process.

The bonus should be large enough to motivate a rational
leader to reward as many processes as possible. Baloochestani
et al. [23] show that the minimum size of the bonus is directly
related to the voting power of the leader. To verify this, we
add a constant Weight to the specification that indicates each
process’s voting power. Then we check different values for
the bonus (starting with 1%) for different weights to see the
minimum bonus required to motivate rational processes to
follow the protocol. Then we run Eiffel with different values
for the bonus and leader voting power. Figure 5 illustrates the
minimum bonus required for the invariant to hold. We see
that the minimum bonus is also increased when the attacking
fraction increases. This further verifies that the current bonus
in Cosmos is sufficient to thwart rational processes with a
weight up to 10%.

VII. CONCLUSION

The security and effectiveness of distributed systems, such
as blockchains, heavily rely on the participation of partici-
pants. Rewarding mechanisms play a crucial role in incen-
tivizing this participation. However, for these mechanisms
to be effective, they need to be fair, correct, and capable

of withstanding rational behavior. Utility analysis, therefore,
becomes essential in ensuring the desired outcomes.

Formal verification methods, such as TLA+, have been
widely used to ensure the correctness of distributed systems.
However, their application for utility analysis has been limited.
In this paper, we proposed Eiffel, a novel approach that
extends formal verification capabilities in distributed systems
to include utility analysis. By leveraging TLA+ and the
concept of Nash equilibrium, Eiffel enables the analysis of
rewarding mechanisms and the detection of potential attacks.
We showed the capability of Eiffel to prove Nash equilibria
and to find different attacks in the rewarding mechanisms using
committee-based blockchains and Tendermint as the use cases.
This paper introduced a new way for utility analysis using
TLA+. In the future, Eiffel can be extended to use other
formal verification techniques and analyze different types of
blockchains.

REFERENCES

[1] S. V. Akram, P. K. Malik, R. Singh, G. Anita, and S. Tanwar, “Adoption
of blockchain technology in various realms: Opportunities and chal-
lenges,” Security and Privacy, vol. 3, no. 5, p. e109, 2020.

[2] Y. Meng, Z. Cao, and D. Qu, “A committee-based byzantine consensus
protocol for blockchain,” in 2018 IEEE 9th International Conference on
Software Engineering and Service Science (ICSESS). IEEE, 2018, pp.
1–6.

[3] W. Li, S. Andreina, J.-M. Bohli, and G. Karame, “Securing proof-of-
stake blockchain protocols,” in Data Privacy Management, Cryptocur-
rencies and Blockchain Technology. Springer, 2017, pp. 297–315.

[4] L. LAMPORT, R. SHOSTAK, and M. PEASE, “The byzantine generals
problem,” ACM Transactions on Programming Languages and Systems,
vol. 4, no. 3, pp. 382–401, 1982.

[5] J. Kwon, “Tendermint: Consensus without mining,” Draft v. 0.6, fall,
vol. 1, no. 11, 2014.

[6] Y. Amoussou-Guenou, A. del Pozzo, M. Potop-Butucaru, and S. Tucci-
Piergiovanni, “On fairness in committee-based blockchains,” in 2nd
International Conference on Blockchain Economics, Security and Pro-
tocols (Tokenomics 2020), 2020.

[7] L. Lamport, “The temporal logic of actions,” ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 16, no. 3, pp.
872–923, 1994.

[8] ——, “Byzantizing paxos by refinement,” in International symposium
on distributed computing. Springer, 2011, pp. 211–224.

[9] L. Jehl, “Formal verification of hotstuff,” in International Conference on
Formal Techniques for Distributed Objects, Components, and Systems.
Springer, 2021, pp. 197–204.

[10] S. Braithwaite, E. Buchman, I. Konnov, Z. Milosevic, I. Stoilkovska,
J. Widder, and A. Zamfir, “Formal specification and model checking
of the tendermint blockchain synchronization protocol (short paper),”
in 2nd Workshop on Formal Methods for Blockchains (FMBC 2020).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[11] Z. Milosevic and I. Konnov, “Tendermintacc 004 draft.tla,”
https://github.com/cometbft/cometbft/blob/main/spec/light-client/
accountability/TendermintAcc 004 draft.tla, 2020, accessed on May
15, 2023.

[12] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li,
D. Malkhi, O. Naor, D. Perelman, and A. Sonnino, “State machine
replication in the libra blockchain,” The Libra Assn., Tech. Rep, 2019.

[13] J. Chen and S. Micali, “Algorand: A secure and efficient distributed
ledger,” Theoretical Computer Science, vol. 777, pp. 155–183, 2019.

[14] J. Kwon and E. Buchman, “Cosmos: A network of distributed ledgers,”
URL https://cosmos. network/whitepaper, 2016.

[15] W. Li, M. Cao, Y. Wang, C. Tang, and F. Lin, “Mining pool game model
and nash equilibrium analysis for pow-based blockchain networks,”
IEEE Access, vol. 8, pp. 101 049–101 060, 2020.

[16] A. Kiayias, E. Koutsoupias, M. Kyropoulou, and Y. Tselekounis,
“Blockchain mining games,” in Proceedings of the 2016 ACM Con-
ference on Economics and Computation, 2016, pp. 365–382.

[17] Y. Amoussou-Guenou, B. Biais, M. Potop-Butucaru, and S. Tucci-
Piergiovanni, “Rational behavior in committee-based blockchains,”
Cryptology ePrint Archive, 2020.

[18] A. Benhaim, “Study of nash equilibria in blockchain voting systems,”
Ph.D. dissertation, University of Pennsylvania, 2022.

[19] Y. Yu, P. Manolios, and L. Lamport, “Model checking tla+ specifica-
tions,” in Correct Hardware Design and Verification Methods: 10th IFIP
WG10. 5 Advanced Research Working Conference, CHARME’99 Bad-
Herrenalb, Germany, September 27–29, 1999 Proceedings 10. Springer,
1999, pp. 54–66.

[20] L. Lamport and F. B. Schneider, “Verifying hyperproperties with TLA,”
in 2021 IEEE 34th Computer Security Foundations Symposium (CSF).
IEEE, 2021, pp. 1–16.

[21] E. Buchman, J. Kwon, and Z. Milosevic, “The latest gossip on bft
consensus,” arXiv preprint arXiv:1807.04938, 2018.

[22] C. Hub, “validator faq.” [Online]. Available: https://
hub.cosmos.network/main/validators/validator-faq.html

[23] A. Baloochestani, L. Jehl, and H. Meling, “Rebop: Reputation-based in-
centives in committee-based blockchains,” in IFIP International Confer-
ence on Distributed Applications and Interoperable Systems. Springer,
2022, pp. 37–54.

